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ABSTRACT. The theory of Fisher (1973, 1977) and Joesten (1977) for the
steady-state growth of mineral zones by diffusion-controlled reactions is modified
to explicitly and formally account for polymineralic reactants, open-system
diffusive fluxes, and diffusion geometry. The modifications are illustrated by
appl{ing the theory to olivine coronas in mesosiderite meteorites.

eactant composition strongly influences the growth of mineral zones and is
embodied in the layer-growth model Jpresente here by so-called “residual-
concentration-effect” terms or “R-terms.” The open-system modification is similar
to that developed by Ashworth and Birdi (1990}, and the effect of diffusion
geometry is handled by the introduction of a simple geometrical factor. Using the
new formalism, this paper presents quantitative criteria for the stable growth of
quasi-steady-state zone structures (Frantz and Mao, 1975) and analytic expres-
sions for zone widths, zone modes, and the relative change in chemical potential
of any locally buffered component in a mineral zone within a stable zone
structure. It is shown that if one or both of the initial reactants are polymineralic,
then it is possible for a mineral to disappear by reaction in one part of the zone
sequence and to reappear by reaction in another part, and for a mineral to be
stable to diffusion within a layer structure even though it is removed by the
overall structure-forming reaction.

The zone sequence, relative zone widths, and zone modes of olivine coronas
in mesosiderites can be explained largely by layer growth models in which
coupled reaction and diffusion occur ieetween olivine and a polymineralic,
mesosiderite-like matrix assemblage. A 5-component, closed-system model is
a.de‘;;uate to explain many features of coronas, and a 7-component, open-system
model yields similar results to the 5-component model when open-system fluxes
are small. Some constrainis on Onsager diffusion {L-} coefficient ratios, reactions,
and the magnitude of open-system fluxes appropriate to corona growth in
mesosiderites can be obtained, but uncertainties in the values for open-system
fluxes make it difficult to place tight constraints on L-coefficient ratios, and
vice-versa. For the Emery mesosiderite, it :ca.lptgears that P and Cr diffused into the
coronas from a large volume of matrix, and that Fe diffused out of the coronas and
into a large volume of matrix, during open-system diffusion. The combined effect
of local reactions within coronas in Emery was to remove olivine, tridymite,
pl?ioclase, metal, and clinopyroxene and te produce orthopyroxene, chromite,
and merrillite. Most likely, metal was largely transferred from coronas to matrix
by diffusional processes, and oxygen was supplied to coronas from the matrix.

SYMBOLS

Ji = diffusion flux of component i {mol/cm?-s)

Ji " = diffusive flux of component i adjacent to and away from qth reaction site
Ji * = diffusive flux of component i adjacent to and towards gth reaction site
T = time (s)

* Present address: Planetary Geosciences Institute, Depariment of Geological Sciences, University of
Tennessee, Knoxville, Tennessee 37496-1410.
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2 A. Ruzicka—Growth of mineral zones by diffusion-controlled

i = chemical potential of component i (cal/mol)

N} = formula proportion of component i in mineral phase & {dimensionless)

N{ = stoichiometric coeficient of component in reaction r {dimensionless)

L;; = Onsager coefficient for diffusion (mol’/cal-cm-s) of component i in response to the
chemical potential gradient of componentj; in the corona models, L; coefficients refer
to oxides where i = MgO, AlOsy, etc. {abbreviated Lugsg, Laias, tc.)

at = effective cross-sectional area of qth reaction site, normal to diffusive flow {(cm?)

vl = an exchange cycle or reaction coefficient describing the addition (>0} or
removal {<0) rate of component i by reaction at qth zone contact (mol/s); in the
corona models, v coefficients refer to oxides where i = MgQ, AlQy,,, etc.
(abbreviated v W etc.)

v} = an exchange cycle or reaction coefficient describing the formation {>0) or
removal (<0) rate of phase ¢ by direct reaction at qth zone contact (mol/s)

va = velocity of the qth zone contact (cm/s)

V, = molar velume of phase ¢ (cm?/mol}

w=r¢ = ahsolute width of a mineral zone {cm)
Weone = growth rate of a mineral zone {cm/s)
ng™ = net production rate of mineral phase ¢ in a mineral zone {mol/cm?-s)

R} = “residuat-concentration-effect” term describing the rate at which mineral ¢ is
transferred to an adjacent zone by the removal of the disappearing phase at the
qth zone contact (mol/s)

P§ effective production rate of mineral phase ¢ at the qth zone contact (mol/s)

&d = a disappearing phase at the zone contact in question (mineral ¢ is present on
only one side of contact and has v} < 0}; used as a subscript forvand R

$c = a common phase at the zone contact in question {mineral ¢ is present on both

- sides of the contact in question and has either v} > 0 or v} < 0}, or any other
phase that has v} > 0 at the contact in question; used as a subscript for vand R
[ = for a given zone, refers to a leading zone contact (the contact further away from
the initial contact}; used as a'superscript for v, R and a
t = for a given zone, refers to a trailing zone contact (the initial contact, or the
contact closer to the initial contact); used as a superscript for v, R and o
Xy = mole fraction of mineral ¢ in a mineral zone (dimensionless)

ZOIE

Xy "© = volume fraction of mineral ¢ in a mineral zone (dimensionless)

k = number of components present locally

p = number of mineral phases present locally

s = number of reactions involving ith component

z = number of zone contacts where reactions are occurring

INTRODUCTION

Diffusion- and reaction-produced mineral zones such as coronas represent struc-
tures that formed during metamorphism (by diffusion metasomatism) in response to
gradients in chemical potentials and afford a unique opportunity to study reaction and
diffusion processes. This is because both the reactants and products of the reactions are
{atleast in part) preserved and because the details of the layer structures (zone sequernces,
zone modes, zone widths) can be sensitive to the diffusive fluxes involved in their
formation. Thus, studies of layer-growth structures potentially allow reaction processes
and mass-flux conditions during metamorphism io be reconstructed in detail.

During metamorphism, reaction rates should generally exceed diffusion rates for all
but the very smallest structures, implying that local equilibrium will prevail during most
metamorphic processes (Fisher and Elliot, 1974; Fisher, 1977, 1978: Fisher and Lasaga,
1981). If focal equilibrium is maintained, then the chemical potential {j1) of one or more
components is buffered by the local mineral assemblage, and p-gradients within the
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diffusion medium will be constrained by the composition of the locally co-existing
crystalline phases (Korzhinskii, 1959; Joesten, 1977, 1991; Brady, 1977). Diffusion and
reaction between thermodynamically incompatible reactants will produce mineral zone
structures (Korzhinskii 1959, 1971; Thompson, 1959) that may evolve rapidly so as to
attain quasi-steady-state diffusion fluxes, and quasi-steady stoichiometries of reactions at
zone contacts (Fisher, 1973, 1977; Fisher and Lasaga, 1981). In a quasi-steady-state, the
complete set of reaction stoichiometries at zone contacts defines the “exchange cycle.”
The exchange cycle can be used to determine the layering configuration and the modes
and widths of the layers in the structure. For any particular structure involving quasi-
steady-state growth and local equilibrium, the exchange cycle can be determined by
simultaneously solving a set of local mass balance, steady flux, and local equilibrium
equations if the ratios of Onsager diffusion coefficients (L-coefficients) of the diffusing
components are known or are assumed (Fisher, 1973, 1977; Joesten, 1977, 1986a; Fisher
and Lasaga, 1981; Ashworth and Birdi, 1990; Johnson and Carlson, 1990; see also
Weare and others, 1976; Frantz and Mao, 1975, 1976, 1979; and Foster 1981, 1983,
1986, 1991 for similar approaches).

In this paper, the models developed by Fisher (1973, 1977) and Joesten (1977) are
modified so as to facilitate their use for a larger variety of mineralogically zoned
structures. The principal modification involves the way reactant composition is treated.
It has long been recognized that reactant modal composition has an important influence
on the development of mineral zone structures ( Joesten, 1977; Foster, 1981, 1983, 1986,
1991; Swapp, 1988), but analytical expressions that quantify the effect for the general
case have not (until now) been developed. In this paper, so-called “R-terms,” which
embody the effect of reactant modal composition, are incorporated into equations that
are used to calculate the growth rates of phases and mineral zones. With this approach,
polymineralic reactants can be modelled with the same equations that are used for
monomineralic reactants. Another modification involves open-system fluxes. In his
model, Joesten (1977) considered closed-system diffusion only. Open-system diffusion,
with diffusion occurring between layer assemblages and their surroundings, was later
considered by Joesten (1986b), Ashworth and Birdi (1990), Johnson and Carlson (1990),
and Carlson and Johnson (1991). The equations used here to model open-system
diffusion are similar to those used by Ashworth and Birdi (1990), although they are used
in a different manner. Ashworth and Birdi (1990) focussed on the “inverse” approach of
attempting to constrain the magnitude of open-system fluxes from the details of corona
assemblages, while in this paper the “forward” approach is used, which calculates the
corona assemblage that develops for given values of open-system fluxes.

The theory is illustrated by applying it to olivine coronas, which separate largely
monomineralic olivine clasts from a polymineralic silicate-phosphate-metallic matrix, in
the Emery and Morristown mesosiderite meteorites (Ruzicka and others, 1994). Table 1
summarizes petrologic data for coronas in Emery and Morristown. The coronas can be
subdivided into three zones (table 1): (1) the inner zone, adjacent to olivine, primarily
contains orthopyroxene and chromite; (2) the middle zone is rich in orthopyroxene,
plagioclase, and often merrillite; and (3) the outer zone, adjacent to a tridymite-bearing
and often metal-rich matrix, is similar to the middle zone except that it contains
clinopyroxene and less merrillite. In Morristown, the inner zone can be subdivided into
an orthopyroxene + chromite subzone immediately adjacent to olivine and into an
orthopyroxene subzone adjacent to the middle zone.

The coronas in mesosiderites provide a striking example of coupled reaction-
diffusion processes during high-temperature (850°-~1200°C), anhydrous metamorphism
(Powell, 1971; Floran, 1978; Nehru and others, 1980; Ruzicka and others, 1994). There is
abundant evidence to suggest that local equilibrium was largely maintained during



4 A, Ruzicka—Growth of mineral zones by diffusion-controlled

Tasir 1
A, Petrologic data for olivine coronas and adjacent matrix in Emery (Ruzicka and others, 1994).

Zone modes and widths refer bo the velatively flat portions of the coronas. Coronas in Emery are
600 to 1000 pwm thick and surround mm-sized olivine mineral clasts

Zone ol Inner Middle Chuter Matrix
Fractional width of corona - 0.12-0.26 0.23-0.35 0.40-0.a5 -
Mode (volt)

ol 100 ] ] 0 0
ogx ¢ 80-90 64 50-60 25-30
chr trace 6-15 1-3 =4 =%
merr o 2-6 6-15 7-11 2-3
plag ¢ <1 20-25 230 20
opx 0 <(.5 <(.1 <5 =5
iII:n 0 1-2 1 =2 =2
troi 0 =5 =02 =1 =2
kamn 0 1] =1 =2 A0-35
tae L] =(.2 0.1 =2 5
trid 0 0 0 ] =5
Phases:

ol = olivine; Fayy.y; mol percent {uniform for a given clast).

opx = orthopyroxene; Enzg saFspy 0sWoy 13y mol percent.

CE = chromite; atomic Cr/[Cr + Al) ~ (.75 to 0.85, Fe/(Fe + Mg} ~ 0.87 t0 0.91, 2Ti/(2Tt + Cr + Al} ~
0.05 to 0.10 typical, up to 0.25 in the inner zone of coronas,

merr = merriflite; essentially Cag(P()y), with 3.5 to 3.7 wt percent MgO, 0.8 to 1.0 wt percent Fe(), 0.9 to
1.0 wt percent Na,O.

plag = qla,gioc]ase; Anyg 470150 5 mol percent.

cpx = clinopyroxene; Engs 45Fs15 ;W 043,50 mol percent.

ilm = ilmenite.

troi = troilite.

kam = kamacite; ~93 wt percent Fe, ~7 wt percent Ni, = 0.03 wt percent P, < 0.01 wt percent Cr.

tae = taenite; mainly tetrataenite with ~51 wt percent Ni, ~-49 wt percent Fe, = {.04 wt percent P, = 0.03
wt percent Cr. .

trid = tridymite; nearly pure Si0O;.

B. Petrologic data for olivine coronas and adjacent matrix in Morristown (Ruzicka and others,
1994). Zone modes and widths refer to the relatively flat portions of the coronas. Coronas in
Morristown are between 300 to 400 pum thick and surround mm-sized olivine mineral

- and lithic clasts
Zone ol Inner* Middle Outer Matrix
Fractional width of corona - {.12-0.22 0.19-0.25 0.57-0.68 -
Maode (volt)
ol 100 0 0 0 0
olEx 0 86-92 Al—65 65=-70 60
chr trace 6-12 = =0.5 1
merr 0 <2 =3 = 1
plag 0 =0.2 30-45 20-30 25-30
Cpx 0 <kl <1 = 5
ilm 0 =1 =0.1 =1 <1
troi 0 ={1 ={.1 =0.1 ={.1
kam 0 0 0 ={.1 =0.1
Lae ] 0 =0.1 ={.1 =0.1
trid 0 0 0 Q 5
Phases:

ol = olivine; Fa 737 mol percent {uniform for given clast).
opx = otthopyroxene; Enge.7Fs16.30Wo1 223 mol percent.
cpx = clinopyroxene; Eng.4oFssoWo4z.44 mol percent.
ther abbreviations as in [A}.
* Can be subdivided into a largely bimineralic opx + chr subzene {fractional width of corena ~0.05 to
0.11} adjacent to ol and into a monomineralic epx subzone {fractional width of corona ~0.06 to 0.12) adjacent
to the tuddie zone.
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metamorphic growth of the coronas, and that they primarily formed by diffusion-
controlled processes {Nehru and others, 1980; Ruzicka and others, 1994). The bulk
compositions of the coronas resemble a mixture of olivine and mesosiderite matrix,
except that PO, and CrOy,, are enriched, and metallic Fe and total Fe are depleted in
the coronas (Ruzicka and others, 1994},

MODTLS FOR OLIVINE CORONAS IN MESOSIDERITES

In this paper, two specific growth models for olivine coronas in mesosiderites have
been considered. Both models envision reaction and diffusion occurring between
semi-infinite halfspaces of monomineralic olivine and a polymineralic matrix. The
halfspace approximation is appropriate for modelling the relatively flat portions of
coronas, In both models, oxygen is assumed to be a dependent component, always
combining with cations to form MgQO, AlOy,,, CaQ, Si0,, TiO,, CrOy, and FeQ. The
two miodels, which are refered to as the “5-component model” and the “7-component
model” throughout this paper, are summarized in table 2, along with the assumed
compositions of mineral phases.

The 5-component model (Mg(Q-AlO;,,-CaO-8i0,-POs,.) entails the reaction of
forsterite (F) with a matrix containing enstatite (E), diopside {D), tridymite (T), anorthite
(A), and merrillite (M) to form a corona assemblage during closed-system diffusion. It is
assumed that MgAl,O, spinel (S} is absent in the initial reactants but that it can form in
the corona by reaction between forsterite and anorthite, dependent on the rate at which
MgO and AlQjy,, are supplied by diffusion. The proportions of enstatite, diopside,
anorthite, tridymite, and merrillite in matrix are assumed to be equivalent to that of
orthopyroxene, clinopyroxene, plagioclase, tridymite, and merrillite in average meso-

siderite matrix (Delaney and others, 1981), respectively, although for reasons explained
later, in many cases the abundance of merrillite in matrix was increased relative to that of
the other phases. ' '

The 7-component model (MgO-AlQ,,,-Ca0-Si0,y-PO;s- CrOy,y-FeO) entails the
reaction of olivine {F) with a matrix containing orthopyroxene (E), chromite (S),
merrillite (M), anorthite {A), clinopyroxene (D}, kamacite (K), and tridymite (T).
Closed-system diffusion for MgQ, AlO;,,, CaO, and SiQ, is assumed, and because the
coronas in mesosiderites cannot be regarded as mixtures of olivine and matrix for P, Cr,
and Fe (see above), either closed- or open-system diffusion for POj,y, CrO;,., and FeQ is
assumed. The compositions and proportions of the phases in the matrix are assumed to
be similar to those in the matrix of Emery (Ruzicka and others, 1994). The composition
assumed for kamacite in the model (99.03 wt percent Fe, 0.65 wt percent P, 0.32 wt
percent Cr) is representative of that inferred for Emery metal prior to corona formation
and has slightly elevated contents of P and Cr compared to that currently found in Emery
{(=0.04 wt percent P and =0.03 wt percent Cr} (Ruzicka and others, 1994), However,
nearly identical model results are obtained if kamacite is assumed to be pure Fe.

CONCEPTUAL FRAMEWORK
Before discussing the calculation procedure used to model layer growth, it is
necessary to discuss briefly some of the concepts upon which the models rest. Of
particular importance are the reference frame for diffusion and the kinds of layer
structures that can form during quasi-steady-state diffusion.

Reference Frame and the Initial Contact

The reference frame used here is the inert marker frame (Hartley and Crank, 1949,
Brady, 1975; Fisher, 1977). It is convenient to cast equalions in terms of an inert marker
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Tanle 2
The 5- and 7-component models described in this paper. 5S-component model: forsterite reacts
with matrix; system is closed to all components (MgO, AlQyy, Ca0, 8i0,, and POj,); spinel can
Jorm by reaction betwoeen forsterite and anorthite. 7-component model: olivine reacts with
matrix; system &5 closed to MgO, AlG;,5, CaO, and Si0; and is either open or closed to PO;,,

Cnyg, and Fe()
5-Component Model 7-Component Model
Matrix Matrix
Phase and Composition Mode* Phase and Composition** Mode**
Symbol (atomic) {vol%) Symbal {atomic) {vol%)
Forsterite () Mg, S0, 1] Qlivine (F) (Mga soFenan)2Si0y 0
Enstatite (E; MgSiO, 57.4 Orthopyroxene (E] Mgy a5Feq 3Cay 05103 28
Spinel (S} MgAlLO, 0 Cr-spinel (8] Mgy 1 FenaCry salp 4Oy 1.5
errillite %M:] CaﬂPO;);, 2.4 Merrillite M:l Cag(PO.;:]g 2.5
Anorthite [A]  CaALSip0Oy 988  Anorthile [A) CaAl,SiyOy 21
Diopside (D)) Cag sMgn 5510, 3.3 Clinopyroxene {IY)  Cag43Mgg.4sFep 125103 4
Trdymite (T)  8iC)y, L Tridymite {T} S0y 4
Metal (K} FenossPo.0117Cro.0037 39

* Average mode of matrix in mesosiderites normalized to 10G percent (Delaney and others, 1981}
** Representative phase compositions and matrix mode in Emery (Table 1a; Ruzicka and others, 1994).

that corresponds to the position of the “initial contact” between two reacting assem-
blages. For bi-directional growth of mineral zones, where two initial reactants are
present, the initial contact will always occur within a mineral layer, although under some
conditions it may be very close to, and hence practically indistinguishable from, a
mineralogical zone boundary. Assuming that reactions occur primarily at layer contacts,
the mineral zone containing the initial contact will be either {a) monomineralic, or (2)
polymineralic and bimodal, with a discontinuity in mode {but not mineral assemblage}
marking the location in bimodal layers { Joesten, 1977). In an inert marker frame, layer
contacts separating different mineral assemblages will appear to move, but the initial
contact will be stationary.

Quasi-steady-state Zone Sequences

The layer-forming process is initiated when reversible reaction occurs between two
thermodynamically incompatible media. After the onset of appreciable diffusion, reac-
tions will no longer be reversible, and irreversible growth of the zone structure will occur.
Eventually, a quasi-steady-state condition will be obtained, in which zone modes and
relative zone widths remain constant with time, even as the zones continue to widen.
This section qualitatively discusses some of the conditions that must be met for zone
structures to be stable to quasi-steady-state diffusion and defines terminology that is used
to describe such structures,

For quasi-steady-state growth to occur, all zone contacts on the same side of the
initial contact must move in one direction, and all zone coniacts on the other side of the
initial contact must move in the opposite direction. For a given zone, the “leading contact” of
the zone is the one farther from the initial contaci, and the “trailing contact” of the zone is the one
closer to the initial contact. The leading contact will be the first 1o sweep past a given inert
marker, with the trailing contact for the same zone passing the same inert marker at some
later time. The initial contact itself can be regarded as the (stationary} “trailing” contact
of the two modally distinct, but mineralogically identical, portions of the zones on either
side of it,
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Examples of possible quasi-steady-state, 5-component model olivine coronas in
mesosiderites (see table 2 for mineral abbreviations) include:

F|ESM|EAM|EDAMIEDTAM {sequence A}
F|ES|EM|EAM{EDAM|{EDTAM {sequence B}
FiES|EM|EDM|EDAMIEDTAM (sequence C)

F|ES|EM|EDM|EAM |ETAM{EDTAM {sequence D)

in which zones are designated by the phases they contain {for example, the EAM zone
contains enstatite, anorthite, and merrillite}, and in which arrows above zone contacts
indicate the sense of motion of the contacts in an inert marker frame. For sequence A, the
initial contact between F and EDTAM occurs within the ESM zone, whereas for
sequences B, C, and D, it occurs within the EM zone.

Four criteria must be met for a mineral zone sequence to be stable to diffusion-
controlled reactions in a quasi-steady-state:

Criterion 1.—Local equilibrium must be maintained everywhere in the system, and
thus the layer sequence must be consistent with phase equilibrium, mineral facies, or
p-diagrams (Korzhinskii, 1959, 1971; Joesten, 1977; Brady, 1977; Frantz and Mao, 1975).
In other words, all phases that are in direct contact with one another {such as all the
phases within a given zone or all the phases at a given zone contact) must coexist stably.

Criterion 2.—A particular phase assemblage cannot occur at more than one zone
contact, for this would imply that chemical potentials were the same at multiple contacts,
and thus that no p-gradients were present between these contacts to drive diffusion. As
can be readily verified, a different phase assemblage occurs at each zone contact in
sequences A through D.

Criterion 3.--At each layer contact, at least one mineral has a negative growth rate
and is being consumed by reaction, so that it appears only on one side of the contact. A
phase that is being removed by reaction and appears only on one side of a given zone
contact can be referred to conveniently as a “disappearing phase” (or “singular phase” in
the terminology of Frantz and Mao, 1975 at the contact at which it disappears. Similarly,
a phase that is being produced by reaction and that appears only on one side of a layer
contact can be referred to as a “newly-appearing” phase at that contact. Finally, a phase
that is present on both sides of a contact, and which can have either a positive or negative
growth rate, can be referred to as a “common phase’ at this contact (Frantz and Mao,
1975}, Frantz and Mao (1975} showed that each layer contact will move in the direction
of the zone containing a disappearing phase for that contact. This means that in an inert
marker frame, all layer contacts will appear to move away from that layer in the zone
structure that has the fewest number of minerals, and away from the initial interface
between the reactants that bound the layer structure. For example, in the model zone
sequence F|ESM|EAM |EDAM |EDTAM (sequence A}, disappearing phases obviously
include T at the EDAM-EDTAM contact and D at the EAM-EIDAM contact, as these are
the only phases that appear on only one side of the contacts. F must be the disappearing
phase at the F-ESM contact if the corona is to grow bidirectionally. At the ESM-EAM
contact, S must be a newly-appearing phase and A the disappearing phase, because S
_does not appear among the initial reactants. The initial interface between F and EDTAM
will occur within the ESM layer.
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Criterion 4.—For each modally distinct zone, the velocity of the leading contact must
exceed the velocity of the trailing contact (Joesten, 1977, p. 661}, for otherwise the zone
will disappear with time. Thus, in an inert marker frame in which the initial contact is
stationary, the zone contacts furthest from the initial contact will have the highest
velocities and the zone contacts closest to the initial eontact will have the lowest
velocities.

CALCULATION PROCEDURE
Two basic calculation steps are involved in the quantitative modelling of steady-
state growth of mineral zones by diffusion-controlled reactions.. The first step is to
determine the exchange cycle by simultaneously solving a set of mass balance and flux
equations. The equations used in the exchange cycle calculation are similar to those
outlined by Joesten (1977) but differ in detail. The second step is to incorporate the effect
of reactant composition on layer growth. These steps are described below.

EXCHANGE CYCLE, CALCULATION
To model the growth of mineral zones in diffusion/reaction structures, one needs to
know the reaction rates for all components {v;) and mineral phases {v,) at the reaction
sites in the structure. The exchange cycle describes all reactions occurring in the system.
Assuming that a quasi-steady-state flux has been achieved and that reactions occur at
zone contacts, the exchange cycle generaily may be calculated by solving the following
three sets of equations simultaneously (see Ruzicka, ms, for more details):

P
of = = N (1)
»=1

£ Loofd U™
>m §%+J?")=0 @
z uf
JT e 2= =0 @)
=1

where v} = addition (>0) or removal {<0) rate of component i from the diffusion
medium at the qth contact; v} = formation (>0} or dissolution (<0) rate of mineral phase
& by reaction at the qth contact; N} = formula proportion of component i in mineral
phase ¢; Lg;s/Ly; is the ratio of a reference L-coefficient {for example, Lgg) to another
L-coefficient {L;); a® = effective reaction area parallel to diffusive flow at the gth contact;
and J7' and J¢ represent steady fluxes of component i within the initial reactants.
L-coefficients are generalized mobilities (Katchalsky and Curran, 1967) or diffusivities
and measure the ease with which components are transported down gradients in
chemical potentials (Brady, 1977). As written, (2) assumes that I; = 0 for i # j, although
similar expressions could be written for situations in which this condition is not satisfied.

Egs 5), {2), and (3) are similar to those used by Joesten {(1977) to determine the
exchange cycle, except that they have been modified to take into account various layer
geometries {through the a term), and the possibility of open-system fluxes {through the

J ' and Ji~ terms). In this paper, the v and v represent reaction rates, although per unit
time they are equivalent to reaction stoichiometries, in the same sense as used by Joesten
{1977).

In a growing quasi-steady-state zone structure, zones thicken and p-gradients within
each zone decrease, resulting in diminished changes in p-gradients and consequently in
diminished reaction rates at zone contacts (Fisher, 1977, p. 394). In this paper, one of the

unknown reaction rates at a zone contact {for example, vgf(‘;;"a""w”‘) is arbitrarily
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specified, and all other results are scaled to this rate. Thus, the models describe the layer
structure that forms in a quasi-steady-state at a particular moment in time, when
1@?{;’2"‘*’““‘""" corresponds toa certain value.

When the number of equations, given by (1}, (2), (3) and the arbitrary specification
of a reaction rate, equal the number of unknowns {one reaction rate for each phase and
component at each contaet), the exchange cycle can be solved. However, in some
circurnstances, additional equations besides those given by (1), (2}, and (3) are needed to
calculate the exchange cycle.

For example, it can be shown that the exchange cycle for any spinel-bearing zone
sequence in the 5-component model {table 2} cannot be determined without the use of an
additional equation constraining the formation rate of spinel. In the 5-component model,
MgAl,O, spinel is absent in the initial reactants, and it can only form after layer growth
has been initiated. For this model, it is assumed that spinel can form only as rapidly as
MgO and AlQy,, are supplied to potential spinel-forming regions by the breakdown of
forsterite and anorthite. Thus, the total rate of MgAl,O, spinel formation by reaction
(nf**, in mol/unit time-area) is expressed as:

I e :

nyt = ~F minimum of VLo, 0.5vf{f)m) (4)
where u{;’é‘ow and Vi3, ., Tepresent the respective rates of reaction of MgO and AlO,, at
any contacts located between forsterite and anorthite in a layer structure, and o'
represents the effective reaction area normal to diffusion in the spinel-forming region.
Exchange cycle results for a spinelfree zone sequence are used to calculate ng™ for an
analogous spinel-bearing zone sequence. For example, the exchange cycle results for the
zone sequence F|EAM|EDAM | EDTAM are used to calculate ng™ for any sequence that
contains one or more spinel-bearing layers between F and the partial
structure ... EAM|EDAM|EDTAM [n, o = min [v{;,gESM, 0.51)&%3?]). Although the
total rate of spinel formation is constrained by {4), spinel in all other respects is treated
the same way as other phases when solving the exchange cycle. In effect, this approach
assumes that the 5-component model coronas will pass through a transient quasi-steady-
state in which spinel is absent initially and then into a different transient quasi-steady-
state in which spinel is present. The concept of multiple transient quasi-steady-states was
also considered by Johnson and Carlson (1990} and Ashworth and coworkers (1992).

For the zone sequence F|ES|EM|EDM |[EAM ETAM |[EDTAM {sequence D), yet
an additional equalion must be included in the exchange cycle caleulation. This arises
because diopside disappears by reaction at the ETAM-EDTAM contact but reappears
by reaction at the EDM-EAM contact, a complication that can arise for certain
combinations of L-ratios and reactant compositions. For sequence D, diopside initially
present within matrix must ultimately reappear somewhere within the corona, unless it is
removed by reaction, owing to mass balance constraints. In a sense, diopside is transferred
from the matrix to the corona (n¥%**") until it reaches a zone in which it is stable to
quasi-steady-state diffusion. {Such mass transfers are produced by a “residual-
concentration-effect” and are described in more detail below.) The transfer rate of
diopside is the same for any spinek-free layer sequence assuming the same L-coefficients,
inilial reactant composition, et cetera, and thus the exchange cycle results for any
spinel-free layer assernblage can be used to constrain the transfer rate for diopside. Thus,
for example,

(ngmfﬂ)ﬂgslm|EDM|W|EIM|EDMM = (%p) FIEDAM EDTAM (5)
where the second term (the molar amount of diopside formed in the EDAM layer per
unit time per unil area normal to diffusive flow) can be readily calculated from the
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exchange cycle results for FIEDAM |[EDTAM, Although the rate of diopside transfer for
sequence I is constrained by (5), diopside in all other respects is treated the same way as
other phases when solving the exchange cycle.

To perform the exchange cycle calculation one must specify L-ratios in (2}, any
open-system fluxes within the initial reactants (J;™' and J7 "} in {2) and (3}, the composi-
tions of minerals (N¢) in (1) and {2}, and the effective reaction areas (a3} in (2), (3}, and (4).
The effective reaction areas depend on the diffusion geometry assumed. For plane-
parallel layers (as assumed here), a% = constant, whereas for spherical geometry, a¢ =
4m(r4)?, where r1 = radius of the gth contact. In this paper, it was assumed that mineral
compositions (N?) are constant throughout the system of interest.

INCORFPORATING THE EFFECT OF REACTANT COMPOSITION

Residual-Concentration-Effect

For layer sequences composed of monomineralic layers and reactants, the effective
growth rates of phases are given directly by the exchange cycle coefficients. However, for
polymineralic layers and reactants, the effective growth rates of phases depend not only
on the direct reaction rates, given by the exchange cycle, but also on the modal
compositions of the reactants.

A simple example illustrates the difference between a system with mono- and
polymineralic reactants. If the matrix of mesosiderites consisted of tridymite alone, the
coronas could be modelled as follows:

FIE|T

where E = enstatite growing by reaction at the expense of forsterite {F) and tridymite (T).
For closed-system diffusion, the effective growth (or production) rates of E at the F-E and
E-T contacts, PiF and PL", respectively, are given by:

FE I

: Vg E
EE _ ET _ ;
Py Ty Py = LED {BA)

and the velocities of the layer contacts are given by:

Vel e e Ve

: vil =
af

EE _ __ FE
v VE" | ) E | ET

(6B}

where Vi = molar volume of enstatite, and where velocities away [rom F are arbitrarily
taken to be positive. In mesosiderites, the matrix is rich in orthopyroxene, and a better
representation of the coronas is given by:

F|E|ET.

Assuming that L-coefficients {as well as mineral compositions and open-system fluxes)
are the same [or F|E|T as for F|E[ET, the exchange cycle coelficients of phases in
FIE|T will be the same as in F|E|ET. Moreover, the effective growth rates for Fand E at
the F-E contact and the velocity of the F-E contact will be the same for F|E|T as for
F|E|ET. However, the presence of some E in the ET zone will cause the velocity of the
E-ET contact to be greater than the velocity of the E-T contact. This arises because there
is less T to be removed from a bimineralic ET reactant, than there is T to be removed
from a monomineralic reactant, for a given removal rate of T. Thus, the E-ET layer
contact will move more rapidly than the E-T layer contacl. Similarly, the effective



reactions: theory and application to mesosiderites 11

production rate of E at the E-ET contact will be greater than the effective production rate
of E at the E-T contact, because the removal of T at E-ET causes E to be concentrated in a
residue that is added to the F, zone. The latter effect, which can be regarded as a transfer
of E from ET to E by the removal of T, is here referred to as the “residual-concentration-
effect.” This rate of transfer of E at the E-ET contact, RE™, is given by mass balance:

XET
REET = _.UJI:Z—ET(
£T
Xy
where Uf™ = reaction rate of the disappearing phase (tridymite) at the E-ET contact,
X' = mole fraction of tridymite in the reactant, and XE! = the mole fraction of enstatite
in the reactant. The effective production rate of E at the E-ET contact, PE®T, can be found
from:

(7)

UE—ET + Rg:ET

PEEY = 8A
E o EET (8A)
and the velocity of the E-ET contact is now:
Ve
EET _ [, EET + RE—E 8B
v [UE E T] (XE‘ET ( )

In (7), as Xi;" — 0 {and as X£" — 1), RE*T — 0, and the F|E|ET corona increasingly
resembles that of F| E| T (as needs be the case). Conversely, as Xi* — 1 (and as X5' — 0),
REFT — =, and the effective production rate of E at E-ET (given by (8A)) and the velocity
of the E-ET contact (given by (8B)) become infinitely large.

This example demonstrates the importance of the residual-concentration-effect,
which must be considered. for any mineral zone that grows at the expense of a
polymineralic reactant. The existence of a residual-concentration-effect follows from
criterion 3 for quasi-stable zone growth. As the zone contact of a polymineralic reactant
sweeps past a given inert marker, at least one mineral (a disappearing phase) in the
reactant must be completely removed by reaction, which will result in a concentration of
all the non-disappearing (that is, common) phases in the reactant. The importance of the
residual-concentration-effect for assessing zone sequence stability as well as for determin-
ing zones modes and widths was previously recognized by Joesten (1977, see his eq
10-12) and by Swapp (1988), but neither of these authors generalized the concept.

The mass-transfer rate at which phases are concentrated in the “residue” produced
by the removal of a disappearing phase is given by a so-called R-term:

X

- 9
where v}; = the exchange cycle reaction rate of the disappearing phase at the qth
contact, X4 = the mole fraction of the disappearing phase in the reactant, and X,, = the
mole fraction of any phase in the same reactant. The “*”” and hence the mole fraction
ratio in (9) refer to the reactant zone from which the disappearing phase is being
removed. If & happens to be a disappearing phase (b = &d), then application of (9)
yields:

*

¢ _ g
Rd) = _vd)d

*

ool _ —vl,, (10)

KXo

and the R-term has a negative value equal to the loss rate of the disappearing phase at the
contact at which it is disappearing. Eq (9) is applicable to any zone contact in any

q .7
Ri-4,= ~Vga
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quasi-steady-state zone sequence in which all reactions are modelled as occurring at zone
contacts and is consistent with the method that Joesten (1977) used to determine zone
modes and widths.

Zone Modes and Thicknesses

As shown in the previous section, R, can be regarded as a production term for
mineral ¢ at a leading contact of a mineral zone. If the effective production rates, given
by equations analogous to (8A), of all phases at a layer contact are known, then the mode
of the layer can be ‘calculated. Mineral proportions within a given zone are determined
by reactions at the leading contact of a growing layer, as the leading contact of any zone
will move past a given inert marker before the trailing contact of the zone has had a
chance to move past the marker. Thus, the molar fraction of mineral ¢ in a zone (X2*°)

and the volume fraction of mineral ¢ in a zone (x5*) can be expressed as:

) {
uy + Rd:
£ L B AL,
X¢ ; (11A)
! !
dgl vy + Rd>
{ {
v, + ROV,
Xgme: Mm (11B)

¥4
2 0+ RLY,
b=1

where the superscript | refers to the leading contact and where V is the molar volume of
mineral ¢. (In this paper, the molar volumes of Robie and others, 1978, were used.)

In a layer structure experiencing quasi-steady-state growth, the thickness ratios of
zones remain unchanged even though the absolute thicknesses of individual zones
continue to increase with time. Unlike modes, the thickness of a mineral zone depends
on reactions that occur both at the leading and trailing contacts of the zone {Joesten,
1977). The growth rate (W<} or width per unit time of a mineral zone is given by the
difference in velocity between the leading and trailing contacts:

1 P
—L—,?‘,l R . I{b}. (12)

If the trailing contact happens to correspond to the initial contact, then R}, = 0, and the
second bracketed term in {12) equals zero.

In practice, the calculation of modal compositions and relative zone thicknesses for
polymineralic reaction/diffusion zones proceeds one zone (for uni-directional growth) or
two zones {for bi-directional growth) at a time, because the composition and width of any
zone depends on the composition of the adjacent zone or initial reactant out of which the
zone is forming. After the exchange cycle is determined, R-terms are calculated for the
zone contacts immediately adjacent to the initial reactants by using {9). This enables the
modes of the zones immediately adjacent to the initial reactants to be determined by
using (11). This procedure is repeated for the next adjacent zone or zones (closer to the
initial contact), and continued until the modes of all zones have been determined. Once
modal compositions have been calculated for all zones, the relative widths of the zones
can be determined by using {12).

w{aﬂé

Weene=

1 ?
ld;(vi+Rév)'V¢

T a

Evaluating Zone Sequence Stability

The stability criteria for mineral zone sequences stable to quasi-steady-state diffu-
sion, previously discussed qualitatively, can now be put.into a quantitative form. If ¢d
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represents a disappearing phase and ¢c any other phase at the qth contact, then criterion
3 for steady-state growth implies:

v <0 (13A)
and
v, + R, =0 (13B)
whereas criterion 4 for steady-state growth implies:
vi+ R O[RY
one ¢ ¢ — __‘E
ny" = = o =0 (13C)

While all diffusion-controlled zone sequences stable to quasi-steady-state diffusion must
satisfy (13), not all zone sequences that meet these criteria may actually be achieved in
real systems, because of constraints imposed on the fluxes of diffusing components by the
stoichiometry of the minerals present (Joesten, 1977, p. 657) and by the composition of
the initial reactants.

Influence of Initial Reactant Composition

Reactant composition during zone growth is an important variable in determining
the sequence, widths, and compositions of zones that form by diffusion-controlled
reactions. An increase in the modal abundance of a mineral in a reactant will tend to
result in more of this mineral being present in the zones forming at the expense of this
reactant and will tend to stabilize zone sequences in which the mineral appears in
multiple mineral zones. Conversely, a decrease in the modal abundance of a mineral in a
reactant will result in less of this mineral being present in the zones forming at the
expense of this reactant and will tend to stabilize zone sequences in which the mineral
appears in a small number of mineral zones.

Average mesosiderite matrix in the five-component model system (with
molar XEPTAM = 0.7178; X[P™M = 0.0394;, XEPTAM = 01207, XEPT™AM = 0.1196;
X3P TAM = 0.0095) is relatively poor in merrillite and diopside and rich in enstatite,
tridymite, and anorthite (Delaney and others, 1981). Owing to their low abundances, the
distribution of merrillite and diopside in the model coronas will depend greatly on the
composition assumed for the matrix and on the assumed L-ratios. This is illustrated for
merrillite by the L-ratio plots Lyp/Lg;g; versus Laja/Lgsi (fig. 1). Figure 1A shows the zone
sequences that form if merrillite is always present in sufficient proportions in the matrix
to prevent this mineral from becoming a disappearing phase, whereas figure 1B shows
the zone sequences that develop for a fixed matrix merrillite/tridymite molar ratio of
0.10, similar to that in average mesosiderite mairix (0.08). As Lpp/Lg;s; is progressively
increased, more merrillite tends to be removed by reaction close to matrix, and more
tends to be produced by reaction away from matrix within the corona. For a given matrix
composition, this will tend to result in zone sequences in which merrillite is absent in two
or more zones either adjacent to matrix (sequences E and F) or in the central-to-outer
portion of the coronas (sequences G, H, I, J) (fig. 1B). On the other hand, if the
merrillite/tridymite ratio in the matrix is relatively high, merrillite will appear through-
out larger portions of the coronas (fig. 1A). Merrillite is always concentrated immediately
adjacent to the initial contact in an EM or ESM zone, both because of the residual-
concentration-effect, and because local buffering by merrillite and other phases in
5-component model coronas tends to cause POg, to diffuse mainly toward olivine (as
shown in fig. 2 and discussed below).



A. Ruzicka—Growth of mineral zones by diffusion-controlled

14

Ay 910N "XLIJEW JJLIIPISOSIUL 9FeI0AR UL Ol SIUAPLI)/AN[[LLISW 1) JO IAREIUasaIdal ST Yorgm 010 =

(V) ur mojued o 81 Yum (g) ur suongisues sousnbas auoz Jo uonsod ayy ussmiaq souspuodssriod

v 1A X v 1aa X TE[OW Udym $20uanbas

SUOZ STIOLIEA JO (souUl] Aaeay) syruay] Ajiqess ag) mBOMm (4) "z 23y uw paururexa Eos%v:g 2% 21EDTPUI S1OP PI[OS 'SUONIPUOD JSIL} 19pUN (] pPUE )

¢ ‘Y saouanbas Jo sy AN[IqeIs a1y) 9)BAUISP S3UT] AARI[] “SBUOI0D AT) W 250y SuiLvadqosip e

U029 WO [eISUIU SIY] HC®>®.H& 01 I3 XTew

Jo Kddns yusiygns & Sununsse ‘(p pue ) ‘g ‘Y seouanbes su0z 2zZIIqEIS 01 LIS (SAUI PANOP) o1 1IN/ 1 e X TE[OW JO SIM[EA THOLUILTUS 1)
smoys () (1861 ‘s19y10 pue Asueps(]) Xujew sjuapisosswr aferaae Ut ‘Afpanadsar ‘oyuidprn pue aseroorderd ‘suaxoridou *ausxoikdomiio jo yey
0] JE[IWIS 9JB ATV LCEH W [ pue “y °q ‘7 jo suontodod ay ey pue ‘| = '$1§7,20%0 = SIS /ANIN yey) sumsse suone[nopes [y “[ppow sty) SurpreSar
UONEULIOJUT I9}0 PUE SUOHRIABIGQE [RISUILE 10§ 7 I[qE} 938 ‘PIUINSSE SeM [9POUI Juouodwmoo-g sy ], ‘sesusnbas suoz euoiod [opow areis-Apeajs-isenb
snouea Jo AIqers oy uo SSTAMy puw SST/VIV] pue uopsodwod (WY LOH) XUyew jo 1d9ge oy Sunensny sweferp oner 7 iy

p)Ho 5pnb
_m_mu_ﬂ 2 on_H ) z._
|[gpow jusuodwoos—-g

_w_ml_\_<_<u_ .m_m.._\_<_<

1

0ol 0l i 1°0 I10°0 QO0lI ol l 1°0 10°0
LLAB LI T —u_ Tirr1 T __-__n_ T B —_—-___ T T mrrrrT T uq T L} L} —_-___d T T m____-_ T 1) FOIO
g ] X :
m 9 v I 3 v :
= 3 = . 3170
= S Y A YRR A <0° ] -
- 9 /8 ; . o
m I “ ......... asmmannT OP m d
=3 = ® -9 F /
- - =R aaAwmsTTEEesmssvAseAsA—d—di-adnam] S—I
: _) _ m ” ............... 0z ” m.w
: 2 = 8 L 08 4 01
i i " 4 3 -V saouanbas Joj |
- ‘0 = : - . 1 W, . -
s b0 = wvias x\zﬁcu X Ava AVLa3 x\zﬁou X uiw (v) ;
ﬂ—_. L& 1 1 _: 11 1 1 1 —:.-LI—. 1 1 __._.. 11 1 “ MJ-—-—p L L _______ ] [} _:u__ Il 1 _:___ 1 L 3 OOF
Wv1a3|wvl3lvL3alva3|aalwa|sald :r wvia3a|wvLialWvalva3ina|s3(d tH WvlaalwvL3|wva|na3inais3id :q
WvL1a3ivia3lva3aja3a|waisald o1 wvia3lwva3|vaalaaingisaid 9 WVLa3|Wva3(na3ainwaislid 0
:SS_<Eu_<ou_z<m__zm_mumh_ 4 AYL1Q3|AYA3IAV3INIISTId :8
Wvla3via3|va3|nv3insals 3 WV1Q3|WVa3InvI[NsId v



reactions: theory and application to-mesosiderites 15

(A) reference case Lugug” Lsist = 1w/ Lsisi = 1
- L L =1L L. =1
. S—component mode| initial contact F—EDTAM | S98e Sis! PP/ sisi
§ F ESM ESM EAM EDAM EDTAM
- % width=| 17.3 18.6 25.6 38.5
o 00— - — —k .
gn MgO ~
v ~
A | \
E | ~
~
8T ~ ]
c [ coo T~
L R il (it Aelote PR it EPRY Y
1)) Q ) - ""-_ -""-_h_
— - - qN=- el
E 3 oM -7 | T a
g = | /
€ = -
5 6 [ P%a | L /
c I -s0p / .
i L
]
a L
o L ]
- S0, 1
®_100 -
= L -] e - o N 4
o} [ | N | (- . PP |
2
relative distance
o E91.2|E 85.7] E 61.9 E 54.7 E 56.4
o w® F 100 |S 88 |S07 A 34.3 A 30.7 A 28.3
O o MO M 13.6) M 3.8 M0 M 4.0
E K D 14.6 D 3.3
T 8.0

Fig. 2. Plots summarizing the zone sequences, relative zone widths, zone modal compositions, and
relative chemical potential variations for three quasi-steady-state model coronas, produced with three different
sets of Lratios and matrix (EDTAM) compositions. The 5-component model was assumed; see table 2 for
mineral abbreviations and other information regarding this model. Numbers near the top of the plots represent
fractional zone widths (total corona width = 100), and arrows at zone contacts indicate the sense of motion of
the contacts in an inert marker reference frame. Exchange cycle and net reaction coefficients for each of the
three cases are given in table 3 (cases 1-3). (A) Reference case for a 5-component model corona produced
when all L-coefficients equal one another, and when the merrillite (M) abundance in EDTAM has been
increased relative to average mesosiderite matrix so as to just prevent M from becoming a disappearing phase at
the EDAM-EDTAM contact. F |[ESM |[EAM |[EDAM IED']I‘AM is the stable sequence. (E) 5-component model
corona produced when Ly, is much smaller than other L-coefficients, and when the M abundance of EDTAM
has been increased relative to average mesosiderite matrix so as to just prevent M from becoming a disappearing
phaseat the EDAM-EDTAM contact. F|ESM |EAM | EDAM | EDT]A is the stable sequence. (C% 5-component
model corona produced when Lyja; is much larger than other L-coefficients, and when the M abundance of
EDTAM has been increased relative to average mesosiderite matrix so as to just prevent M from becoming a
disappearing phase at the EDM-EAM contact. F[ES |[EM |[EDM |[EAM |ETAM [EDTAM is the stable sequence.

The zone sequences in figure 1A and 1B differ greatly in their spatial distribution of
diopside, suggesting that a change in the abundance of matrix diopside should affect the
L-ratio space over which the zone sequences will be stable. From the previous discussion,
one would predict that an increase in the abundance of matrix diopside should stabilize
those zone sequences in which diopside appears in multiple corona zones. Indeed,
calculations show that increasing the amount of matrix diopside will increase the stability
range of sequence C relative to B and D and of G and I relative to sequences F, ], and H

(fig. 1).
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Fig. 2 {continued)

B-VARIATIONS ACROSS MINERAL ZONES

The variation in chemical potentials across mineral zones and the change in
chemical potential gradients across zone contacts can be determined for a quasi-steady-
state zone sequence by combining knowledge of L-coefficients, reaction rates of compo-
nents at zone contacts, diffusion geometry, open-system fluxes in the initial reactants {if
any), and zone thicknesses. As chemical potential gradients are ultimately responsible for
driving diffusion, an analysis of these gradients is useful for understanding why particular
layer structures form and for predicting how changes in L-coefficients will affect layer

structure growth.

Assuming for simplicity that L = 0 for i # j and that L; = constant, then:

¢
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Fig. 2 (continued)
where J;"1 = flux in the zone adjacent to and Zeward the qth contact; JI~ = flux in the

zone adjacent to and away from the qth contact; J7P*" = open-system flux into or out of
the corona; A[Vp]1 = the change in chemical potential gradient across the qth contact;
v} = reaction rate of component i at the qth contact; a9 = effective reaction area normal
to diffusive flow at the qth contact; Wrs(=w=n¢/7) = growth rate of a mineral zone; and
7 = time elapsed. It should be noted if L;; # 0 for i # j, then expressions similar to (14) can
be written by replacing L; in {14) with an “effective binary” diffusion coefficient (S.
Chakraborty, personal communication). (14B) can be rearranged to solve for the change
in chemical potential within any given zone (Ap;"9, Ap{™, or simply Api°"™). To obtain
absolute values for Ap?™ from eq [14B], absclute values for all relevant parameters (L,
v, a9, and W) must be known. However, to obtain relative or time-invariant changes in

Api°"°, only relative values for these parameters are needed (L-ratios, relative v}, relative

a4, relative W). Alternatively, eq {14B) may be used to model absolute zone thicknesses
(if Apz™, v, a9, 7, and L; are known or assumed) or to model the time elapsed in

13

steady-state growth (if Ap?*™, v, a9, L;, and W are known or assumed).

1

As an example of eq (14), consider the 7-component model corona
F|ES|ESM |ESMA |[ESMAD |[ESMADXKT. For the 7-component model, it is assumed
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that open-system fluxes within the ESMADKT initial reactant can be non-zero for some
components, and that there are no open-system fluxes within F. Defining J** as the
open-system flux of i through ESMADKT away from the ESMAD-ESMADKT contact
and out of the corona, eq (14B) leads to:

ApESHAD [ ESMAD ESMADKT WESMAD
T ( T ;m‘)( Ly ) 154
ApESHs UESMA ESMAD \ ESMAD ESMADKT WESMAD
o = + - (15B)
. oESMAESHAD © ( EsAD-EsApKr i\
ApESM [ ESMESMA \ ESMAESMAD | ESMAD-ESHADKT WESM
e , U 15
. ESMESMA o ESMAESMAD *  EsMAD-ESMADKT /i |\ T
ApESESM)  (\ESESM  (ESMESMA \ESMAESHAD | ESMAD-ESMADKT
T (QES-ESM+ EswEMA T, EsvA pswap T ESMADESMADKT_‘]:M
WES(ESM)
. (mi"m (15D)
ApESE) [ FES\ St
i (am )( ~ ) (15E)

for all modally distinct zones within the corona, where the superscript ES(F) refers to that
portion of the ES zone adjacent to F, the superscript ES(ESM) refers to that portion of the
ES zone adjacent to the ESM zone, and Ap?°™ is measured from F to ESMADKT. For an
open-system flux through ESMADKT foward the ESMAD-ESMADKT contact and into
the corona, J{™ (15) has a negative value (equal to positive Ji*).

Examples of 11, versus distance plots for model olivine coronas are shown in figure 2
(5-component model) and figure 3 (7-component model) and are discussed below. On all
such plots, the values for Ap; within mineral zones depend on local buffering constraints
(encapsulated in eq 2) and on L-ratios. Inflections in Vp; occur at all zone contacts that
have a change in mineralogy, because of a difference in the buffering constraints on
either side of the contacts. A concave-downward inflection in the gradient of p; corresponds
to a region of local addition of i to the diffusion medium (> 0) and by local mass
balance constraints (eq 1), to a region where i-bearing minerals are being partially or
completely removed by reaction. Conversely, a concave-upward inflection in the gradient
of p; corresponds to a region of local removal of i from the diffusion medium (v < 0) and
to a region where i- bearing minerals are being locally produced by reactions.

An overall decrease in g0, from matrix to olivine is pre-supposed by assuming that

Si0y is evolved at a contact aél acent to or close to the matrix. For example, for the

5- comEonent model corona F| ESM |EAM |EDAM |[EDTAM (fig. 2A,B), the parameter
s EPTAM was set to an arbitrary positive value (table 3, cases 1-2), corresponding to
the release of 5i0, by reaction into the diffusion medium at the EDAM-EDTAM contact.

A similar assumption was made for the other model coronas (table 3, cases 3-5).

MODELLING RESULTS

5-Component Model Coronas—Three Examples

For the 5-component model, calculations reveal that the value of the diffusivity
parameter Ly has a large effect on layer growth. Consequently, model results for three
five-component coronas with different values of Laja) are shown in figure 2 and in table 3.
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For the “reference case” (fig. 2A; table 3, case 1), all L-coefficients have equal values, and
the model corona FI|ESM|EAM|EDAM |EDTAM is stable. For the “L, 5 -low case”
(fig. 2B; table 3, case 2), the value of Ly, is much smaller than for other L-coefficients,
and the model corona F|ESM|EAM|EDAM|EDTAM is stable. Finally, for the “Lja-
high case” (fig. 2C; table 3, case 3), the value of Ly is much larger than for other
L-coefficients, and the model corona F|ES|EM |EDM | EAM|ETAM |EDTAM is stable,
For each case, a matrix composition similar to that of average mesosiderite matrix has
been assumed, except that the merrillite abundance was increased as necessary to just
prevent merrillite from becoming a disappearing phase in the model coronas. This
assumption was made because merrillite does not appear to have been a disappearing
phase in coronas from Emery and Morristown.

If L, is relatively small, AlOy, diffuses sluggishly, and the change in PAo,,, ACTOSs
coronas is relatively large (fig. 2b). Sluggish diffusion of AlO;, results in negligible rates
of reaction involving Al {v};) (table 3, case 2, because little AlO;,, can be transported
down gradients in y1,,5,, to reaction sites. Consequently, the modal proportion of
Al-bearing anorthite (A) in various zones (that grew in place of the EDTAM reactant) is
relatively constant (fig. 2B).

In contrast, if Ly, is relatively large, the model corona F|ES|EM|EDM]|
EAM|ETAM|EDTAM is stable (fig. 2C). AlQOy,, diffuses rapidly, and the change in
JPAlo,,, across the model corona is very small (fig. 2C). Large expanses of Al-free mineral
zones (EM and EDM] are produced within corona where Paio,, is locally high (fig. 2C),
because AlOj, is transported rapidly away from areas where 1A, is high to areas
where it is low. Reaction rates involving Al (v},) are correspondingly large, and a large
amount of Al-spinel is produced in the overall corona-forming reaction for this model
corona (table 3, case 3).

A tridymite-bearing ETAM zone for the La-high model corona is stable, because
for this condition diopside (D) is consumed before tridymite (T) at the corona-matrix
contact. Buffering by tridymite + enstatite in the ETAM zone results in dpge™ = dpgiaM
= 0, and thus SiQ); and MgO are neither evolved nor consumed at the ETAM-EDTAM
contact (fig. 2C). For this sequence, it was assumed that Si is evolved at the EAM-ETAM
contact (vg ™ 1AM > 0), so that SiO, diffuses toward olivine. Tridymite is stable within
the corona in the ETAM zone even though it is removed in the net corona forming
reaction (table 3, case 3). This demonstrates that the mere appearance of a mineral in a layer
within a quasi-steady-state zone sequence does not necessarily imply anything about whether the
mineral was produced, removed, or lefi unchanged in the overall layer-forming process.

Figure 2C also illustrates an interesting aspect of some model coronas, namely the
disappearance of a given phase at one contact and the reappearance of the same phase at
another contact. In fig. 2C, diopside disappears by reaction at the ETAM-EDTAM
contact and reappears by reaction at the EDM-EAM contact. While this may seem
counterintuitive, it does not violate any of the stability criteria for quasi-steady-state zone
sequences. Different mineral assemblages are present at each zone contact, and at no two
points between I and EDTAM within this model corona are the same values of p; for all
components attained (fig. 2C). The stable existence of this zone sequence shows that for
some combinations of L-ratios and reactant compositions, a phase can disappear by reaction
in one part of the corona and reappear by reaction in another part. A somewhat similar
conclusion was reached by Foster (1991} for mineral segregations in pelitic rocks.

5-Component Model—Correspondence to Actual Coronas

Calculations involving various L-ratios and matrix modes with the 5-component
model suggest that reasonably good analogues to coronas in Emery and Morristown can
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Fig. 3. Plots summarizing the zone sequences, relative zone widths, zone modal compositions, and relative
chemical potential variations for two quasi-steady-state model coronas, produced with two different sets of L-ratios and
open-system fluxes. The 7-component model was assumed; see table 2 for mineral abbreviations and other
information regarding this model. Open-system fluxes of P and Cr into the corona (J§, J¢,) and Fe out of the corona (

o) at the ESMAD-ESMADKT contact are expressed in terms of moles/(umit time-area), relative to F? MAD-ESMADRT
12 moles/{unit ime). Numbers near the top of the plots represent fractional zone widths (total corona-width = 100),
and arrows at zone contacts indicate the sense of motion of the contacts in an inert marker reference frame. Exchange
cycle and net reaction coefficients for both cases are given in table 3 {cases 4 and 5). (A) Analog to Emery coronas

roduced when the value of Lg;; is relatively high and the values for open-system fluxes are relatively small. F [ES
FESMIESMAEESMADIESMADKT is the stable sequence. The ES (adjacent F), ESMA, and ESMAD zones are
analogous to the inner, middle, and outer zones of coronas in Emery, respectively; the narrow and spinelrich ES
(adjacent ESM) and ESM zones could correspond to the chromite-rich necklace often found at the inner-middle zone
contact in such coronas. (B) Analog to Emery coronas produced when the value of Lgg; is relatively small and the
values of %en;gstem fluxes are relatively large. FI]'ES |ESM | ESMA | ESMAD |ESMADKT is the stable zone
sequence. The ES, ESMA, and ESMAD zones are analogous to the inner, middle, and outer zones of coronas in
Emery, respectively; the M-rich, A-absent ESM zone could correspond to the merrillite-rich, plagioclase-depleted
portion of the middle zone sometimes found immediately adjacent to the inner zone in such coronas.

be produced by coupled reaction and diffusion between forsterite and a silicate-
phosphate assemblage but only if the abundance of merrillite is enhanced over that
currently found in the matrix of the meteorites. Otherwise, merrillite tends to become a
disappearing phase in the coronas, and one or more merrillite-free zones will develop
between matrix and the initial olivine-matrix contact. As most of the P within mesosiderites
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Fig. 3 {continued)

‘currently resides in merrillite, this suggests that the present P content of mesosiderite
matrix is insufficient to account for the amount and distribution of merrillite within the
coronas. The same conclusion can be reached from mass balance considerations
(Ruzicka and others, 1994).

With the 5-component model, the model sequence F|[ESM|EAM|EDAM |EDTAM
provides the best analog to coronas in Emery, with the ESM, EAM, and EDAM zones in
the model corresponding largely to the inner, middle, and outer zones of Emery coronas,
respectively (table 1). In contrast, the model sequence F|ES|EM |EAM |[EDAM|EDTAM
provides the best analog to coronas in Morristown, with the ES and EM zones
corresponding to the orthopyroxene + chromite and orthopyroxene subzones of the
inner zone of Morristown coronas, respectively, and the EAM and EDAM zones correspond-
ing to the middle and outer zones of Morristown coronas, respectively (table 1).

Assuming that merrillite is sufficiently abundant in the matrix to prevent it from
becoming a disappearing phase, the best match between 5-component model and
observed coronas for Morristown is obtained with Lgg; = 8 Laa = 50 Lagug = 250 to
1000 Lpp. For Emery, the best match is obtained when Lg;s; > 3 Lc,c, and wi‘nen Lgsi = 3
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TABLE 3

Exchange cycle and net reaction coefficients for five selected cases of the 5- and 7-component models
described in the text. Zone sequences for each of the cases are given in the table footnote

5-Component Mode] 7-Component Model
Case 1 Case 2 Case 3 Case 4 Case §
L-ratios:
Lvgug/Luisi 1 1 1 0.08 100
Laiar/ Laisi 1 0.01 100 0.01 100
Leaca/Lsisi 1 1 1 001 40
Lov/Las 1 1 1 0.0001 0.1
Lao/Lss: - - - 1 60
Leer./Lsisi - - - 0.01 100
Open-system flux
(molfunit-time-area):
= 0 0 0 9 290
in - - - 3 980
out - - - 5 550
Matrix mode (mol9h)**
E 71.28 71.23 70.19 12.84 12.84
S 0 0 0 0.5 0.5
M 1.63 171 3.15 0.37 .37
A 11.18 1117 11.01 3.01 3.01
D 3.91 3.0 3.85 1.75 1.75
K 0 0 0 79.36 70.36
T 11.99 11.98 11.80 2,18 2,18
Exchange eyele cogfficients

(molfunit-time).

38.63 31.63 8.58 0.17 1942.7
-19.32 -0.16 —429.01 —-104 -116.1
0 0 —8.58 -~ 100 -10L3
-38.63 ~31.63 -231.67 —15.52 —16.4
0 0 240.25 .17 —464.4

Exchange cycle coefficients

(molfunit-time).

I FoM —-86.93 —63.34 244,51 ol 0.53 12119
125.56 94.98 101.25 oS —17.83 —3360.0
9.66 0.08 405.01 ot 33.35 3376.4
v 0 0 0 2.61 200.3
UM —19.16 —0.35 -101.45 —-0.01 —0.0
WM EAM 3541 0.47 0 0.00 0.0
VM EAM 577 0.10 101.25 0.02 0.6
pESMEAM 19.16 0.35 -202.51 -0.01 —-0.0
ofSMEAM -8.66 -0.14 0 0.01 0.4
W SMEAM 18.36 0.27 VM EPM —67.99 0.00 0.0
vl EAM 0.80 0.08 ol EDM 41.84 ~0.00 0.0
o EAM 4.33 0.07 vfM EIM 67.99 0.01 0.0
UfSMEAM -18.76 ~0.31 vpM EM —62.76 —0.00 —0.0
UEAMEDAM ~7.47 -19.28 MM 203.98 ~-0.01 -0.2
VM EDAM -10.59 -0.25 : 31.38 1.22 —5890.5
UHAM EDAM 6.23 11.90 —271.97 1.20 906.7
VMDA 7.47 19.28 —-20.84 0.50 425.3
ufAMEDAM -0.34 —17.86 266.91 3.79 4.3
UEAMEDAM 33.01 58.00 —22.70 -0.01 —-1.6
VEAMEDAM 5.29 0.13 29.84 —2.00 L]
VML 4.67 8.93 34.05 —0.51 =297.4
uAMEDAM —-51.07 —~77.63 —177.39 -2.07 905.46

to 5 Ligm = 7 to 10 Ly =~ 7 to 20 Lpp. Ligyca is poorly constrained for Emery as it
depends greatly on the exact mode chosen for the matrix.

The net or overall structure-forming reaction in model coronas can be determined by
summing all local reactions described by the exchange cycle. In the 5-component corona
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TABLE 3
(continued)
5-Component Model 7-Component Model
Case 1 Case 2 Case 3 Case 4 Case 5
DAM-EDTAM ~12 -12 VEPMEAM 414.46 ESHESMA 131 8.5
g
WEDAMEDTAM -6 —~0.06 EDMEAM —17.02 YEMESMA 0.01 0.8
EDAM-EDTAM -12 -1z EPMEAM —133.46  (ESMESMA -0.86 ~455.0
VEDAMEDTAM 12* 12¢ VEAMETAM —12 YEMAESMAD ~0.17 6.0
3 3 ! i
Exthange cycle coefficients
{mol/unit-time):
EDAMEDTAM 18 18 AMETAM —138.05. VESMABSMAD —0.09 1514
EDAMEDTAM 94 ~96.97 EAMETAM —91.24 YESMAESMAD 0.18 1239
EDAMEDTAM 72 77.04 WEAMETAM 19+ vﬁ;‘““ FSMAD —0.27 ~00
VEDAMEDTAM 3 0.03 AM.ETAM 31.86 (EMATSMAD —0.00 —05
EDAMEDTAM _9 _g EAMETAM 12 ESMAESMAD 0.36 39.7
EDAMEDTAM —66 —63.03 AFAMETAM 69.03 “FSMA ESMAD 0.04 ~30.3
AFPMETAM —15.93 YESMAESMAD 0.78 330.4
VEAMETAM —~162.05 u{w.\ ESMAD —0.22 —00.5
ETAMEDTAM 0 ESMAFSMAD 0.00 09
VETAMEDTAM —104.86 GESMATSMAD 0.09 79.8
VETAMEDTAM 2.10 YESMATSMAD —~0.69 —499.0
ETAM EDTAM 0 EMADESMADKT —1.21 —~1350.1
VII;Z‘TAM-E]JI‘AM —3.15 un.smu ESMADKT —0.07 —639.9
TAM-EDTAM 59.95 YESPADESMADKT —~0.10 —448.7
VETAMEDTAM —45.61 MAD-!‘.SMADKT 12° 19%
WETAMEDTAM 52.43 ugbu,m ESMADKT -90 —988.3
quTAM—EDTAM 1.57 “NMAD-F'SMADKT 2.89 165.2
VETAM EDTAM _118.49 “r;sum ESMADKT 194 —334.1
“rw.m FSMADKT 7.05 27790
“!SMAD ESMADKT —180 —102.5
u}h':MAI) ESMADKT 1.03 146.2
UFA.SMAD ESMADKT 0.39 34401
uﬁf“”“’ﬁ”“’“ -840 ~961.0
‘{Es\um.nfl;mnm —404 3508
ESMATESMADKT ~12.34 ~2503.2
5-Component Model 7-Component Model
Case 1 Case 2 Case 3 Case 4 Case 5
Net reaction(mol/unat-time):
v —86.93 —63.34 —231.67 -17.83 —3360.0
R, 152.93 126.37 439.34 40.02 7393.5
vy 10.46 0.16 12 1.8¢ 175.8
uy 0 4] i} 1.03 147.1
va —10.46 —0.16 —12 —-0.38 —35.2
vy 20.93 .31 24 —9.09 —1460.0
e - - - ~4.94 - 3508
ur —b6 —63.03 —207.67 —12.34 —2503.2
vp 0 0 0 -2 —290
Ve - - - -3 —980
Vi - - - 5 550
vort - - - -2.52 —188.8

Case 1: F|ESM |EAM |EDAM | EDTAM,

Case 2: F| ESM | EAM | EDAM { EDTAM.

Case 3: F|ES|EM|EDM | EAM | ETAM |EDTAM.

Case 4: F|ES|ESM | ESMA | ESMAD | ESMADKT.

Case 5: F| ESESM | ESMA | ESMAD | ESMADKT.
* Arbitrarily specified.

** Matrix modes for cases 1-3 are identical except for variable M.
T Caleulated from the net reaction coefficients vy, Ve, Upe by assuming that metal was the open-system source for P and Cr and the sink for Fe, and

consequently that the net reaction coefficients vp, vy, vp, refer to metallic components.
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model, the net reaction for any set of L-ratios is a combination of the two following
principal reactions:

forsterite tridymite enstatite
9Mg,Si0, + CaALSi,0, = 2MgSiO; + 2Mg, sCaysSi0; + MgALO, [2]
forsterite anorthite enstatite diopside spinel

Model results suggest that ~15 to 35 times as much orthopyroxene was produced by
reaction [1] as by reaction [2] for Emery coronas, and that =55 times as much
orthopyroxene was produced by reaction [1] as by reaction {2] for Morristown coronas.

The 5-component model has difficulty in simultaneously accounting for three
features of the coronas in Emery and Morristown (table 1}, including: (1) the low
abundance (=<5 vol percent) of clinopyroxene in the outer zone, {2) the high abundance
of merrillite in the middle (>10 vol percent) and outer zones (>5 vol percent) of Eme
coronas, and (3} the relatively thick inner zones (=15-25% of total corona width) of
Emery coronas. In general, the discrepancies between the actual and 5-component
model coronas are worse for Emery. An additional nefreaction involving the removal of
clinopyroxene and the formation of merrillite appears to be required for Emery and
perhaps for Morristown to account for these discrepancies. Such an additional net
reaction is obtained in the 7-component models (see below).

7-Component Mode! Coronas—Two Examples

Model results for two 7-component coronas with the zone sequence
F|ES|ESM|ESMA |[ESMAD |ESMADKT are shown in figure 3 and table 3. Calcula-
tions for the 7-component model show that the value of the diffusivity parameter Lg;g; and
the magnitude of open-system fluxes have large effects on layer growth. For the Lgg;-high
case (fig. 3A; table 3, case 4), an attempt was made to maximize the value of Lgg; relative
to other L-coefficients while still obtaining a model corona that resembles coronas in
Emery. For the Lg;si-low case (fig. 3B; table 3, case 5), an attempt was made to minimize
the value of Lgg; relative to other L-coefficients while still obtaining a model corona that
resembles coronas in Emery.

In both model coronas, a flux of Fe out of the coronas at the ESMAD-ESMADKT
contact (Jfe' > 0) and a flux of P and Cr into the coronas at the ESMAD-ESMADKT
contact (J§* <0 and J@*' <0, or equivalently Ji >0 and J& > 0) is required. An
open-system influx of P and Cr into the coronas is required to explain the high
abundances of merrillite and chromite within coronas. An open-system outflow of Fe is
required to explain the depletion of metal in coronas relative to matrix.

For both model coronas, pyeo and preo decrease while g0, and peo,, increase
from F to ESMADKT, and py0,,, has a local maximum at the ESM-ESMA contact (fig.
3A, B). This implies that MgO and FeO are diffusing away from olivine, that SiO; and
CrOy,, are diffusing away from matrix, and that AlO;,, is diffusing away from the
ESM-ESMA contact.

A relatively high value of Lgg; will minimize the change of pgp, relative to the
change of p; for other components (fig. 3A) and will minimize the values of reaction
coefficients of all components relative to Si (table 3, case 4). To account for the
observations with a high value of Lgg;, open-system outflows of Fe and inflows of Cr and
P at the corona-matrix contact are required to be small (but non-zero) relative to the rate
at which SiO, evolved at this contact (fig. 3A), and Lyepe, Lyigmg, Laiai, and especially Lpp
are required to be small. The value of L¢.c, can be larger, about as large as Lgg;. An
extremely low value for Lpp means that POg. will diffuse very sluggishly, and thus
P-bearing merrillite (M) will be concentrated in zones where ppo_, is high, in this case a
narrow ESM zone (fig. 3A). In contrast, the moderate value of L, allows CrO;, to be
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effectively transported away from the ESMADKT reactant {(where pco, , is high) to form
abundant chromite (S) in relatively distant zones where pc,o,, is low, in 3115 case two thin
ES and ESM zones {fig. 3A).

On the other hand, a relatively low value of Lgg; will maximize the change of pg;o
relative to the change of , for other components (fig. 3B) and will maximize the values of
reaction coefficients for all components relative to SiO, (table 3, case 5). Higher reaction
coefficients for FeO, CrOj3/q, and POs/, require a larger open-system outflow of Fe and
inflow of Cr and P relative to rate at which SiO, is evolved at the corona-matrix contact
(fig. 3B; table 3, case 5). Higher diffusivities of AlOs,y, CaQ, and POj, relative to S$iO,
cause these components to be more rapidly transported away from areas where they
have high values of chemical potential, resulting in gradational variations in pyo,,,, Pcio,
and ppo, , (fig. 3B). This results in a more uniform distribution of Al-bearing chromite (S)
and merrillite (M) throughout this model corona (fig. 3B) than in the previous one (fig.
3A). . :

7-Component Model—Correspondence to Actual Coronas

With the 7-component model, the model sequence F|ES|ESM|ESMA |
ESMAD |ESMADKT provides the best analog to coronas in Emery. The ES, ESMA,
and ESMAD zones in the model coronas appear to correspond to the inner, middle, and
outer zones of Emery coronas, respectively (compare table 1A and fig. 3A). The ESM
zone, which is rich in merrillite, can be correlated with the inner portion of the middle
zone of Emery coronas, which is usually merrillite-rich and sometimes depleted in
plagioclase compared to the rest of the middle zone. A chromite necklace is often present
at the inner-middle zone contact in Emery coronas (Delaney and others, 1981; Ruzicka
and others, 1994), and this may correspond to the thin, chromite (S)-rich portion of the
ES zone produced in Lg;s;-high model coronas (fig. 3A).

Buffering by Fe-bearing orthopyroxene causes FeO to diffuse away from olivine to
matrix (fig. 3}, and this will tend to produce Fe-rich phases {especially meta.l) close to the
matrix. An open-system flux of Fe out of the coronas and into matrix {Jg) must be
established and be of a sufficient magnitude to destabilize metal and form the ‘metal- -poor
olivine coronas that are observed in mesosiderites. Moreover, an open-system flux of Cr
and P into the coronas from matrix {J&, Ji) is needed to account for the relatively high
abundance of chromite and merrillite in coronas and for the distribution of these phases
in the coronas. The best matches to Emery coronas are obtained when J& =~ J§ =
0.5 - Jou, suggesting that the flux of material entering the coronas was approximately the same as
the flux leaving the coronas.

Unlike the 5-component model, the 7-component model has little difficulty in
accounting for the low abundance of clinopyroxene in the outer zone of coronas,
although the merrillite contents are still somewhat low (compare fig. 3 and table 1A). An
open-system flux of PO;,, into coronas from the matrix, combined with a low value of
Lpp, stabilizes merrillite in the outer zone. As more merrillite forms in this zone, more Ca
goes to form merrillite, and less is available to form clinopyroxene. Consequently, less
clinopyroxene forms in the outer zone. This inverse relationship between the abundance
of merrillite and clinopyroxene in the outer zone is more pronounced in the 7-
component model, where the amount of Ca in matrix is fixed, than in the 5-component
model, where the amount of P and Ca in matrix covary depending on the amount of
merrillite that is assumed to be present in matrix. These results suggest that muck {or all) of
the P that went to form corona merrillite in mesosiderites was dertved from a phase other than
merrillite.

The values of L-coefficient ratios most appropriate to corona growth in meso-
siderites are difficult to constrain uniquely with the 7-component model, owing to the
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uncertainty in the values for open-system fluxes. In the models, all open-system fluxes
were scaled relative to an arbitrary value of v{"MAPESMADKT — 19 moles/[unit time]. As
discussed below, a large variation in acceptable values of relative L-coefficients, espe-
cially in relative Lg;g;, are possible depending on the magnitude of the open-system fluxes
of Fe, P, and Cr.

For small values of open-system outflow and inflow, Lgs; must be relatively large
(COITeSpOnding to the lesl-hlgh case, ﬁg 3A), and I“SiSl = LCrCr = LMEME = LFeFe == Laa =
Lcaca = Lpp, where Lgg; = 1000 Lpp, J& = J& =~ 2 to 3 mol/{unit area-time], and J§&' =5
mol/[unit area-time|. For intermediate values of open-system outflow and inflow, Lagng = Lo =
Leere = Lsisi > Laar > Leaca > Lpp, where Lgs; =~ 100 Lpp. Finally, for large values of
open-system outflow and inflow, Lg;s; must be relatively small (corresponding to the Lg;s;-low
case, fig. 3B), and Ly = Liere = Laia = Lower > Leaca > Lsisi > Lpp, where Ly =~ 0.01
Laigmg = 0.02 Leyce = 10 Ly, J& = J7 = 280 to 290 mol/[unit area-time], and Jg." =~ 550
mol/| funit area-time].

Inferences concerning L-ratios based on the 7-component model when small values
of open-system fluxes are assumed are consistent with “inferences based on the 5-
component model when open-system fluxes are neglected (see above). This suggests that
despite differences in phase compositions and matrix modes, the two types of models
yield consistent results.

The difficulty in obtaining unique constraints on L-ratios is an important result of the
7-component model, for it shows that inferring unique values of L-ratios for a layering
structure may be difficult if open-system fluxes are present. This agrees with the conclusions of

Johnson and Carlson (1990) and Carlson and Johnson (1991). These authors also argued
that open-system fluxes are often involved in the formation of corenas.

An estimate of the net corona-forming reaction for Emery can be obtained by
assuming that the Lgg;-high and Lgg-low cases bracket the likely conditions for corona
growth in Emery. Normalizing the net reaction coefficients for these cases (table 3, cases
4-5) to 1 mole of tridymite, the net corona-forming reaction may be expressed as:

1.34-1.44 F + 0.01-0.03 A + 0.58-0.74 D + 0.14-040 K

olivine plagioclase clinopyroxene metal
+ 1.00 T + 0.11-0.24 Cr,O; + 0.12-0.16 P,0;
tridymite open-system open-systern
—2.95-3.24 E + 0.07-0.15 S + 0.06-0.08 M + 0.22-0.41 FeO [3]
orthopyroxene chromite merrillite open-system

where phase compositions are given in table 2 (“7-component model”), and the first
value for each entry refers to the Lg;s;-low case, and the second value for each entry refers
to the Lg;s-high case. In reaction [3], CryO4 and PyOj are reactants and FeO is a product
because of the assurned open-system fluxes of Cr and P into coronas and of Fe out of the
coronas. These open-system fluxes are responsible for the overall production of chromite
and merrillite and for the removal of metal in the coronas. Anorthite is a net reactant
because the production of Al-bearing chromite requires AlOg; to be removed from
another phase, and anorthite is the only other Al-bearing phase in the system. Clinopy-
roxene is a net reactant because the production of merrillite requires Ca to be removed
from other phases, and Ca-rich clinopyroxene is available for this purpose. Abundant
orthopyroxene is produced mainly because this phase is intermediate in composition
between the two main reacting phases, tridymite and olivine.

As discussed by Ruzicka and others (1994), the “excess” P and Cr in coronas {see
Introduction) was probably derived from a large volume of matrix metal, and matrix
metal could also have been the ultimate sink for the Fe that diffused out of coronas.
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Assuming that metal was the “open-system” source and sink reservoir for P, Cr, and Fe,
reaction [3] may be recast as:

1.34-144 F + 0.01-0.03 A + 0.58-0.74 D + 0.140.40 K

olivine plagioclase clinopyroxene metal

+ 1.00T + 0.11-0.24 Cr® + 0.12-0.16 P° + 0.08-0.20 O,

tridymite open-system open-system open-systemn
— 2.95-3.24 E + 0.07-0.15S + 0.06-0.08 M + 0.22-0.41 Fe® [4]
orthopyroxene chromite merrillite open-system

where Oy could have been supplied by redox reactions in mesosiderites occurring
outside of coronas (Harlow and others, 1982; Ruzicka and others, 1994, p-2738-2739). In
reaction [4], a distinction is made between metal that was removed from the corona-
forming region (designated as “K”) and open-system metallic components that presum-
ably resided in a much larger volume of matrix metal. If the identification of metal as the
open-system reservoir for P, Cr, and Fe is correct, then reaction [4] implies that the
amount of Fe-rich metal removed from the corona-forming region (K) was similar to the
amount of Fe-metal produced in the adjacent matrix (Fe®). In other words, metal was
largely transferred from the corona-forming region to the adjacent matrix. Reaction [4] also
suggests that the large reservoir of “open-system” matrix metal changed composition,
becoming poorer in Cr and P and richer in Fe with time. This implies that in the large
reservoir of matrix surrounding coronas, Cr and P were oxidized, and FeO was reduced.
Reduction of FeO within a large volume of the mesosiderites is consistent with evidence
for the reduction of FeO in basalt/gabbro clasts in these meteorites (Mittlefehldt, 1990)
and is cosistent with thermodynamic predictions for mesosiderites (Harlow and others,
1982). Reduction of FeO in a large volume of the mesosiderites apparently occurred
despite evidence that metallic Fe within coronas was oxidized (Ruzicka and others,

1994).

CONCLUSIONS

Mineral zone structures such as coronas provide a unique opportunity to unravel
the nature and kinetics of diffusion and reaction processes that occurred during metamor-
phism. The FisherJoesten steady-state growth model for mineral zone structures has
been refined, and the residual-concentration-effect has been formalized and incorpo-
rated into equations for layer growth, allowing polymineralic reactants to be readily
modelled in addition to monomineralic reactants. The equations also easily accommo-
date various diffusion geometries (for example, planar or concentric) and either open- or
closed-system diffusion.

As shown by an application of the theory to olivine coronas in mesosiderites, if one
or both of the original reactants are polymineralic, then it is possible for a mineral that is
removed by an overall structure-forming reaction to be stable within one or more zones
within the structure and for a mineral to disappear from one part of the structure and to
reappear in another part. In the general case, it may be difficult to tightly constrain the
ratios of Onsager diffusion (L) coefficients if open-system fluxes are known or suspected
to have occurred; conversely, it may be difficult to tightly constrain the magnitude of
open-system fluxes if the Onsager diffusion coefficients are poorly known. Nonetheless,
the models do permit some useful constraints to be obtained on the L-ratios, open-system
fluxes, and local and overall reactions responsible for layer growth processes during
metamorphism.

The textures and compositions of olivine coronas in the Emery and Morristown
mesosiderites can be successfully modelled as having formed by a quasi-steady-state,
coupled reaction-diffusion process. In Emery, it appears that P and Cr diffused into the
coronas from mairix and that Fe diffused out of the coronas into matrix, during
open-system diffusion. A phase other than merrillite, probably P-bearing metal, was the
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source of P that ultimately was transported to coronas to form merrillite. The open-
system flux of material leaving the coronas was about the same as the open-system flux of
material entering the coronas. The cumulative effect of local reactions within coronas in
Emery was to remove olivine, tridymite, plagioclase, metal, and clinopyroxene, and to
produce orthopyroxene, chromite, and merrillite. It seems likely that metal was largely
transferred by diffusional processes from the corona-forming region to the adjacent
matrix, and that oxygen was supplied to the coronas from the surrounding matrix.
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