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Abstract 

To understand the occurrence and distribution of carbide minerals in ordinary chondrites, 

thirty meteorites were examined, twenty-eight ordinary chondrites and two iron 

meteorites. The occurrence of carbide, textures, and chemical compositions were 

examined in the 7 carbide-bearing meteorites. Two formation methods for carbide have 

been presented in previous research. These are aqueous alteration and shock heating, and 

they are examined for validity in this thesis. Additionally, one other formation method for 

carbide formation through impact and brecciation is put forth and examined. Textural 

differences between the carbide-magnetite assemblages (CMAs) observed by Krot et al., 

(1997) and those seen in this study are compared regarding possible evidence for aqueous 

alteration. Different carbide minerals (haxonite and cohenite) were distinguished using a 

correction method on linescan data obtained through a scanning election microscope. 

Cooling rates, formation temperatures, and closure temperatures from carbide associated 

taenites closely match that of petrographic type 3 material from ordinary chondrites. 

Carbide is not found in shock melt, and shock blackened areas are less likely to contain 

carbide. It is unlikely that the heat source that formed carbides exceeded that of 

petrographic type 3 as too much heat would equilibrate the type 3 material as well as 

carbide minerals or prevent them from forming. 
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Introduction 

Chondrites are stony meteorites that were not melted overall, but which 

experienced thermal metamorphism to various extents. Ordinary (O) chondrites are the 

most numerous kinds of chondrite, and can be subdivided into H, L, and LL types based 

on metal content and chondrule mean diameter (Krot et al., 2005, Brearley et al, 1998). 

Thermal metamorphism can be designated by petrographic types that range from 3 to 6 

for ordinary chondrites, with type 3 the least metamorphosed and type 6 the most (Krot et 

al., 2005, Weisberg et al., 2006). Type 3 chondrites can be subdivided into subtypes 

ranging from 3.0 (least heated) to 3.9 (more heated) (Grossman and Brearley, 2005, Huss 

et al., 2006).  

Besides thermal metamorphism, ordinary chondrites can experience aqueous 

alteration, although this has primarily been described in ordinary chondrites of low 

subtype (3.0-3.2). These include Semarkona, Bishunpur, and Chainpur. Aqueous 

alteration is seen most easily through the formation of secondary mineral phases 

(Brearley, 2006). Additionally, the widespread presence of bleached chondrules in type 3 

chondrites indicates that aqueous alteration may have been more pervasive as these 

appear to have formed by aqueous alteration. Bleached chondrules been found in all three 

ordinary chondrite groups as well as in petrographic types 3-6, although less frequent in 

the higher types and H chondrites (Grossman et al., 2000). 

Shock metamorphism by hypervelocity impacts occurs in ordinary chondrites 

(Stöffler et al., 1988, 1991).  Shock metamorphism can be designated petrographically by 
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stages based on the characteristics of olivine observed with optical microscopy reflecting 

the plastic deformation of the mineral. There are six stages which range from S1 (lightly 

shocked) to S6 (shock recrystallized), with even stronger shocks resulting in impact melt 

rocks (Stöffler et al., 1991). In addition to plastic deformation and melting, impact 

processes also produced breccias of different kinds. These include genomict breccias that 

are composed of fragments of different metamorphic grades (petrographic types), regolith 

breccias that show indicators of surface exposure on an asteroidal parent body, impact-

melt breccias that contain unmelted clasts set amidst impact melt, and fragmental 

breccias containing clasts of impact melt (Bischoff et al., 2006). 

Carbide minerals are known to occur as a common byproduct of steel production 

and are relatively common in iron meteorites (e.g., Buchwald, 1975) but have not been 

recognized to be widely present in ordinary chondrites. However, recently these minerals 

have been detected in several ordinary chondrites (Likkel et al., 2013, Schepker 2014, 

Hutson et al., 2016) and are the focus of this study. At least two types of carbides have 

been identified in ordinary chondrites, cohenite [(Fe, Ni)3C] and haxonite [(Fe, Ni)23C 6] 

(Krot et al., 1997, Hutson et al., 2016). They can be identified with reflected light 

microscopy, as grains that appear light pink/tan in color, usually partly within and at the 

edges of metal grains Figure 1.  

The origins of such carbide minerals are not known. However, one suggestion is 

that they were produced by aqueous alteration of FeNi-metal on the parent body in a 

process that also created magnetite (Krot et al., 1997). This hypothesis would predict that 

carbides should be associated with evidence for aqueous alteration, probably in weakly 
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metamorphosed (type 3) ordinary chondrites in which aqueous alteration effects are 

mainly reported (Brearley, 2006).  Another possibility is that carbides were produced by 

shock-heating of carbon-bearing materials and reaction with metal (Hauver and Ruzicka, 

2011; Likkel et al., 2013; Schepker, 2014, Hutson et al., 2016).  This hypothesis would 

predict that carbides should be associated with shock effects, such as evidence for shock 

melts or other evidence for increased shock as manifested by a higher shock stage. 

This thesis will test these two hypotheses and evaluate the origin of carbide in 

ordinary chondrites, through examination of a variety of ordinary chondrites of different 

shock stages, metamorphic grades (petrographic types), and breccia types.  Optical 

Microscopy (OM) and Scanning Electron Microscope (SEM) data were used to obtain 

petrographic and chemical data for carbides and associated metal phases. These data were 

used to evaluate the conditions on which carbide formed, and the nature of processes 

occurring on the (asteroidal) parent bodies.   
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Background 

The first accounts of carbides in ordinary chondrites were in Semarkona (a type 

LL 3.0 chondrite), ALHA 77278 (LL 3.7), and Ngawi (LL 3.6) (Taylor et al., 1981). 

Fredriksson et al. (1989) found carbide assemblages in Study Butte (H3-6). ALHA 79003 

(LL3.4), Khohar (L 3.6), and Piancaldoli (LL 3.4) contain carbide in the form of haxonite 

(Scott et al., 1982). And recently, carbides have also been described by Grokhovsky et al. 

(2015) in Chelyabinsk and by Harries and Langenhorst (2014) from the asteroid 25143 

Itokawa.  

Krot et al. (1997) did an in-depth analysis of 117 type 3 ordinary chondrites to 

find and study carbides. Krot et al. determined that carbides occurred in assemblages with 

magnetite. These assemblages were called CMAs for carbide-magnetite assemblages. 

The CMAs were found in matrix, chondrules, and chondrule rims of type 3 H, L, and LL 

ordinary chondrites. A typical CMA is layered, with a crude outer layer of magnetite 

surrounding carbide (cohenite or haxonite) and an FeNi-metal core (Krot et al., 1997). 

Krot et al suggested a formation that involved metal-troilite nodules that underwent 

hydrothermal alteration by a C-O-H-rich fluid. The iron-nickel metal then experienced 

carbidization by possibly a CO gas. This reaction could have proceeded as follows (Krot 

et al. 1997): 

15 Fe(s) + 4 CO (g) = 4 Fe3C(s) + Fe3O4(s) [1] 

or 

3 Fe(s) + 2 CO(g) = Fe3C(s) + CO2(g) [2] 
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with reaction [2] followed by oxidation by H2O, possibly by the following reaction: 

3 Fe(s) + 4H2O(g) = Fe3O4(s) + 4H2(g) [3] 

Reactions [1]-[3] all involve reaction of metal with a gas and are 

thermodynamically favorable at low temperatures conditions on asteroidal parent bodies. 

Temperatures would need to be greater than 400 K to produce the necessary gases and 

carbide could form at temperatures less than 700 K with the most favorable reaction ([1]) 

that additionally, produced magnetite (Krot et al., 1997). 

In a recent study by Schepker (2014), carbide grains were found in two 

chondrites, NWA 5964 and NWA 6580, which displayed no evidence for hydrothermal 

alteration or magnetite. Schepker (2014) found that the carbide grains are present in L 

chondrite melt breccias, close to but not within shock-melted regions.  Carbides were not 

found in other meteorites, including a strongly shocked but largely unmelted S6 chondrite 

NWA 4860 nor in two L melt rocks NWA 6454 and NWA 6579 (Schepker 2014). 

Additional work by Likkel et al (2013) on NWA 5964 and Buck Mountain Wash 

supports formation by shock-induced contact metamorphism. These authors, along with 

Hutson et al (2016) suggest carbide formation through shock reheating, which caused the 

breakdown of type 3 material and the reincorporation of carbon into metal phases to form 

carbide.  
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Analytical Methods and Samples 

Optical Microscopy 

Optical Microscopy (OM) on thin sections was performed using a DM2500 Leica 

petrographic microscope with a digital camera and LAS software. Observations were 

made in plane polarized light, cross-polarized light, and reflected light imaging. Reflected 

light imaging was the primary method used to find and identify carbides in meteorite 

samples. Reflected light allowed details in the metal grains to be observed and the 

carbides differentiated from their surroundings. Maps were created to track carbide-

bearing grains by inverting the reflected light mosaic using Adobe Photoshop and then 

marking the non-carbide bearing metals with purple and the carbide bearing metal grains 

in red. 

Several features were used to identify carbides, color being one of the primary 

ways this was accomplished at high magnifications (50x objective) To optimize the 

likelihood of being able to visually identify the carbides, reflected light filters were 

adjusted to differentiate between kamacite, taenite, and troilite as much as possible. 

Saturation, brightness, and contrast were adjusted with LAS software until kamacite was 

a blue-white, taenite was a cream white, and troilite was an orange-brown. Carbide would 

then be salmon pink in coloration, as seen in Figure 1. However, it was not possible to 

optically distinguish between haxonite and cohenite. Additionally, this rendered 

magnetite as a grey/brown color while other oxides and weathers by-products were 

various shades of brighter grey and the silicates were dark grey, also seen in Figure 1. 



7 

 

Relief was another feature that was paired with color to identify carbides. 

Carbides would seemingly sit higher than the surrounding metal and that difference in 

relief can make them easier to see. Fractures are also often associated with carbide, with 

one or more bisecting fractures often crossing a carbide grain but not into surrounding 

metal, or fractures occurring adjacent to grain boundaries (Figure 1).   

 

Figure 1. Illustrates the colors generally attributed to kamacite, taenite, troilite, carbide, 

magnetite, oxides, silicates, and weathering products in reflective light imaging. 

Fractures outline grains, as seen at “a” above.  The picture above was given the 

designation 0157-2-C-440 from NWA 10518 (thin section CML 0157-2). Reflected light, 

image color enhanced.  
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To enhance visibility, images were color enhanced using Adobe Photoshop to 

increase the contrast and brightness. The curves feature was also used to fine tune the 

image.  

SEM Analysis 

Following carbon coating to typically ≤10 nm thickness, carbides and associated 

metal were analyzed using a Zeiss Sigma Field Emission-Variable Pressure (FE-VP) 

SEM with an attached high-efficiency XMax50 silicon-drift energy dispersive 

spectrometer (EDS) and Oxford Instruments AZtec 3.1-3.3 software, located in the 

Center for Electron Microscopy and Nanomaterials (CEMN) at Portland State University 

(PSU). The accelerating voltage for the SEM was set to 15 keV, and beam currents were 

5-10 nA. Backscattered electron (BSE) imaging and EDS data were obtained. EDS data 

were obtained in the form of points with 45 seconds acquisition time, and linescan data 

for variable times (typically for 20-37 passes over several minutes acquisition time) to 

optimize the signal-to-noise in C and Ni count rates. 

Quantitative phase chemical data were obtained by converting count rate data to 

concentrations using energy and beam calibration on a pure Cu standard and factory 

quantitative standardizations for elements of interest (Fe, Ni, C, S). In addition, a special 

procedure was used to correct C concentrations for the effect of carbon coat. This 

correction procedure was performed for linescans that included analysis of both carbide 

and adjacent metal grains. In these traverses, apparent C contents in metal grains (usually 

kamacite, which has typically lower C contents than taenite) were assumed to reflect 

entirely C coat, so that the actual C content of kamacite was zero. The average C content 
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in kamacite was averaged across that phase and this number (the assumed value of the C 

coat) was subtracted from the C contents for the carbide and metal phases in each 

linescan. This adjusted C content was the corrected apparent C content. The average Fe, 

Ni, and C contents were calculated for each phase and normalized to 100% after the 

correction. 

Some linescans across taenite grains were obtained for the purpose of obtaining 

metallographic cooling rates. These were collected much the same way as those for 

carbides except that the linescans were aimed across the center of the taenite grain to 

obtain the best nickel zoning profile.  

Cooling Rate Measurements 

Cooling rate measurements were determined by taking the taenite linescans 

mentioned above and measuring the radius of the taenite grain and the nickel content at 

the center of the grain. The radius and nickel content (in weight percent) were then used 

to determine the metallographic cooling rate using the procedure of Willis and Goldstein 

(1981), Taylor et al, (1987) and Scott et al. (2014). Nickel contents in taenite were used 

to determine a closure temperature based on the central nickel taenite method and phase 

diagram in Reisener and Goldstein (2003a,b), see Figure 2.  

Schepker (2014) digitized the phase diagram using Microsoft Excel for ease of 

computation and this was used to determine closure temperatures. Comparison of the 

digitized Microsoft Excel phase diagram and published versions of the phase diagram 

suggest an accuracy of ± 10°C for the calculations of the former. 
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Figure 2. The Fe-Ni phase diagram from Reisener and Goldstein (2003a,b) depicting the 

taenite Ni compositions and associated temperatures which were used to calculate 

closure temperatures. The bold path indicates the cooling of a 10% Ni grain through 

equilibrium conditions. Schepker (2014) digitized the phase diagram using Microsoft 

Excel to calculate cooling temperatures. 

Samples Studied/Classification  

Thirty meteorites were examined for the presence of carbide. Table 1 below 

shows the complete list of meteorites examined as well as the lab numbers and official 

classifications. The set was selected to sample a variety of ordinary chondrites with 

variable shock stages for the existence of carbide. Seven were genomict breccias, two 
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were iron meteorites, three were melt breccias, and two were melt rocks. Melt breccias 

can include melt-matrix breccias that contain impact melt between constituents, melt 

breccias that contain significant amounts (approaching 50%) of impact melt, and melt-

rich melt breccias that contain mostly impact melt with clasts. According to these 

definitions, NWA 8709 is a melt-matrix breccia, NWA 5964 is a melt breccia, and NWA 

6580 is a melt-rich melt breccia. 

Complications 

With some exceptions, meteorites listed in Table 1 have the official classifications 

listed in the Meteoritical Bulletin Database (MBD, ). The exceptions are NWA 10454, 

NWA 5964, and NWA 6580. NWA 10454 has the official classification of L5/6. During 

further investigation unequilibrated material was found in the main mass that was not 

visible in thin section. Lower type material, including type 3 and 4, was found during 

SEM sessions in a newly prepared section. The zoned minerals in Figure 3 confirms the 

presence of type 3 material. Figure 4 is an example of a melt clast in NWA 10454. For 

this meteorite, the revised classification is L3-6. The official classification of NWA 5964 

is L3-6, however when taking into consideration the abundant melt, L3-6 melt breccia is 

a more accurate classification. NWA 6580’s official classification is L-melt breccia, but a 

chondritic clast contains both type 3 and 6 material, so NWA 6580 is better described as 

a type 3-6 melt-rich melt breccia, L-melt (L3-6) breccia is the adjusted classification.  
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Table 1 All meteorites examined in study 

Official Name CML # Classification 

Shock 

Stage 

Weathering 

Grade 

Classified 

by Author 

San Juan de Allende 0115-0 L3 S3 W1 x 

 Allende F     

NWA 7869 0143-1 L3 S3 W1  

NWA 4860 0288-3 L4 S6 W1  

Park Forest 0089-3 L5 S5   

NWA 10455 0153-2B L6 S4 W2 x 

Tenham 0337-2 L6 S5   

Buck Mountains 005 0491-2 L6  S4 W2  

 0491-3A     

Alfianello 0496-1C L6 S5   

Park   0617-2A L6 S1   

NWA 11648 0015-2 L6 S5 W1  

NWA 10516 0020-2 L3-6 S5 W1 x 

NWA 869 0074-13C L3-6 S3 W1  

NWA 10454 0139-2 L3-6  * S4 W1 x 

NWA 10517 0142-1 L3-6 S4 W1 x 

NWA 10518 0157-2 L3-7 S5 W1 x 

NWA 8709 0109-2 L3 Melt Breccia ** S41 W3 x 

NWA 5964 0175-4-1  L3-6 Melt Breccia *** S1-61   

 0175-2A     

NWA 6580 0371-1 L-melt (L3-6) breccia **** S31 W1  

NWA 6454 0273-1 L-melt rock Melt W1  

NWA 6579 0358-1 L-melt rock Melt W2  

NWA 3127 0248-B LL3.10 S2 W3  

Tieschitz 0781A H/L3.6 S1Δ W1 

Franconia 0333-1 H5 S3 W2  

Gao-Guenie 0035-14 H5 S2   

NWA 10453 0007-6 H6 S4 W2 x 

Kernouve 0666-B H6 S1   

NWA 11121 0172-3 H3-6 S2ΔΔ W2 x 

Buck Mountain Wash 0144-2B H3-5 S2 W1  

 0236     

Monteview 0907-1B Iron, IAB-MG     

Canyon Diablo USNM1766 Iron, IAB-MG      

* The official classification for NWA 10454 is L5/6, however unequilibrated material was found in the 

main mass that was not seen in thin section  

** NWA 8709 is a L3-melt matrix melt breccia 

*** NWA 5964 is chondritic with abundant impact melt 
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**** NWA 6580 Melt breccia with chondritic clast in melt 

Δ Personal Communication with Secana Goudy 

ΔΔ Shock classification reported to Nomenclature committee as “low” 
1 Indicates that shock stage is for chondritic portion only 

 

 

Figure 3. An example of zoned olivine and pyroxene minerals found in a BSE micrograph 

of NWA 10454 (CML0139-2). The magnesian rich and iron rich versions of pyroxene and 

olivine have been labeled with “mg” and “fe” accordingly. The image is a classic 

example for brecciation, in which low type material (mg rich minerals) are 

heterogeneously mixed with high type material (fe rich minerals). BSE image. 
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Figure 4. Shock melt in NWA 10454 (CML 0139-2) is visible as the area outlined in blue, 

surrounded by chondrite areas outside of the blue line and inside of the orange encircled 

area. BSE image.  
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Intermeteorite Distribution of Carbide  

 

Shock Characteristics / Brecciation / Melt Zones 

Observations over the course of this study have not found carbide in melt, 

however every carbide bearing meteorite examined has had melt present in the sample. In 

the case of NWA 10517, there is a shock blackened area, shock melt, and the chondritic 

host material, Figure 5. No carbide was observed in the melt area, however the shock 

blackened area had three carbides while the majority occurred in the unmelted chondritic 

host. The shock blackened area likely received too much heat for carbide formation, or 

the carbides were destroyed due to too much heat. The shock blackened area contains 

troilite that mostly rims metal, Figure 6. Both the metal and troilite in the blackened area 

probably melted. Carbides 27 and 28 in the blackened area likely survived as they 

occurred in the largest metal grain in the shock blackened area, as can be seen in Figure 

5. If the smaller metal grains were melted and remobilized, they could have lost their 

carbide grains through re-equilibration and that could be why no more carbide grains 

occur until closer to the chondritic host material. The observations so far indicate that if 

the melt is too substantial or the temperature too high, the chondritic metal and thus the 

carbides are destroyed, or prevented from forming.  

Regarding brecciation and the distribution of non-carbide bearing and carbide-

bearing meteorites, a distinct pattern was observed. With the exceptions of the iron 

meteorites (as petrographic type and brecciation are not applicable) and San Juan de 

Allende, all the meteorites that contain carbide are genomict breccias, exclusively those 
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Figure 5.Three distinct textures are present in NWA 10517 (CML0142-1): shock melt, 

shock blackened material, and the chondritic host. The red boxes denote the presence of 

carbide and the blue number its photo designation, the purple boxes denote the absence 

of carbide in an area. No carbides occur in the melt area and only three were found in 

the shock blackened area. The carbides primarily occur in the chondritic host, near but 

not in the shock melt. Base image: inverted reflected light.  

that contain type 3 material, Figure 7. San Juan de Allende is a type 3 meteorite and does 

contain carbide. The non-carbide bearing meteorites sample a range of petrographic 

types, but no carbide was found in the higher types without the presence of type 3 

material. The type 3 material was always present in meteorites that were observed to 

contain carbide. 
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Figure 6. Troilite (tan) mainly surrounds metal (white) in NWA 10517 probably as a 

result of metal-troilite melting. Photo 0142-anom-metal texture 02, thin section 

CML0142-1. Reflected light image. 

Shock stage was also examined for a correlation with the presence of carbide. See 

Figure 8. The carbide bearing meteorites, with respect to shock stage, exhibit almost a 

bell curve distribution (Figure 8a), however, no relationship with the presence of carbide 

was found.  

The relationship between shock, melt zones, and the presence of carbide is 

complicated. In the case of NWA 8709, an L3-melt matrix melt breccia, the matrix was 

melted, leaving the chondrules mostly intact but deformed. Olivine indicated a shock 

stage of S4 (Ruzicka et al., 2015). No carbide was found in the sample. NWA 6580 is an 

L melt breccia that contains a L3-6 clast that did not experience melting. No carbide was 

found in the melt; however, it was found to occur in the unmelted L3-6 clast (Schepker, 
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2014). NWA 5964 is a L3-4 melt breccia, roughly half melted with a chondritic portion 

that did not melt. Once again, carbide was not found in the melt but was present in the 

unmelted chondritic portion (Hauver and Ruzicka, 2011, Schepker, 2014). 

Distribution of Carbides with Respect to Lithology 

The spatial distribution of carbide varies across textures within individual 

meteorites as well as between different meteorites. Table 2 is the breakdown of the 

number of carbide grains found per meteorite and in what lithology they were found in. 

The total number of metal grains that were examined for carbide and the number of 

carbide grains found are given. The proportion of carbide against the total amount of 

metal grains examined is given, in addition, the proportion of carbide found in each type 

of lithology is also given in the same column. Host material and low type material are the 

primary textures that carbide can be found in, with smaller occurrences in shocked (but 

not melted) areas and low-type clasts. Higher-type clasts within genomict breccias 

occasionally host carbide, but the amount of carbide in such clasts is small. Melt has not 

been observed to contain carbide.  

The more complicated lithologies of NWA 10518 and NWA 11121 can be seen in 

plane polarized light in Figure 9 and Figure 10, respectively. NWA 10518 has three main 

lithologies; the host, the two high type clasts (A and B), and the shock melt (S). The melt 

and smaller clast “B” had no carbide. The large clast, “A”, had 14 carbides, which 

amounted to 2.5% of the total amount of carbides. The host had the majority of the 

carbides at 97.5%, or 549 carbides. NWA 11121 (Figure 10) contains three lithologies; 

host material, two low type clasts (D and E), and three high type clasts (A, B, C) of which 
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Figure 7. The distribution of meteorites by petrographic type is illustrated above. Plot (a) 

shows the distribution for carbide bearing meteorites, Type 3-X indicates genomict 

breccias and plot (b) is for non-carbide bearing meteorites.  
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Figure 8. The distribution of meteorites by shock stage is shown above. Plot (a) shows 

the carbide bearing meteorites and plot (b) shows the non-carbide bearing meteorites. 
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Table 2 Distribution of carbide grains by lithology 

Official Name 

Carbide 

(Y/N) 

Number of 

Metal Grains 

Examined 

Number of 

Carbide Grains 

Found 

Proportion 

of Carbide 

(%) 

Silicate 

Shock 

Melt 

Buck Mountain Wash 

(0144-2B) Y 1292 833 64.5 

Y 

Mixed Lithology   116 13.9  

Type 3   717 86.1  

Buck Mountain Wash 

(0236) Y 677 30 4.4 

Y 

High Type   0 0  

Mixed Lithology   30 100.0  

NWA 869 (0074) Y1 283 277 97.9 Y 

Host   275 99.28  

Melt   0 0.0  

Shock Blackened   2 0.72  

NWA 5964 (0175-4-

1/0175-2A) Y2 401 372 92.8 

Y 

NWA 6580 (0371-1) Y3 79 26 32.9 Y 

NWA 10454 (0139-2) Y 318 77 24.2 Y 

NWA 10516 (0020-2) Y 464 155 33.4 Y 

NWA 10517 (0142-1) Y 481 202 42.0 Y 

Host   198 98.0  

Shocked Area   4 2.0  

Shock Melt   0 0.0  

NWA 10518 (0157-2) * Y 1315 563 42.8 Y 

Host   549 97.5  

Clast A   14 2.5  

Clast B   0 0.0  

Melt   0 0.0  

NWA 11121 (0172-3) ** Y 2480 153 6.2 Y 

Host   127 83.0  

Clast A   0 0.0  

Clast B   0 0.0  

Clast C   7 4.6  

Clast D   19 12.4  

Clast E   0 0.0  

San Juan de Allende 

(0115-0) Y 292 85 29.1 

Y 

Monteview (0907) Y     
 

Canyon Diablo (USNM 

1766) Y    

 

1 Data courtesy of M. Hutson    
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2 Data courtesy of M. Hutson, K. Hauver and L. Likkel  
 

3 Data courtesy of K. Hauver    
 

*Clast A is a large high type clast, Clast B is a small high type clast  
 

** Clast A,B, and C are high type clasts, Clast D and E are low type clasts  
 

 

only “C” contains carbide. Of the low-type clasts, only “D” contained carbide, while 

most of the carbide was found in the host material.  

As Table 2 illustrates, carbide can primarily be found in the host material or in the 

mixed lithologies containing type 3 material. The host material of the breccias contain 

fragments from the petrographic types of material that make up the meteorite (Bischoff et 

al., 2006), which for the carbide bearing meteorites are type 3-6, with the exception of 

San Juan de Allende. High-type clasts tend to be either void of carbide or contain only 

small amounts. While melt does not contain carbide, areas in close proximity to melt can 

contain carbide, such as shock blackened areas but generally not as much as the host 

material (Figure 5).  
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Figure 9.The lithologies of NWA 10518 (CML0157-2) can be seen above. The two clasts 

outlined in blue and labeled “A” and “B” are high type clasts, with the larger clast 

being type 6 material. The two areas in green and labeled with “S” are shock melt. The 

rest of the thin section is considered the host material. Plane-polarized transmitted light 

image. 
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Figure 10. The lithological breakdown of NWA 11121 (CML 0172-3). The blue areas 

“A”, “B”, and “C” are high type clasts and the orange areas, “D” and “E” are low 

type clasts. Plane-polarized transmitted light image. 
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Intrameteorite Distribution of Carbide  

The distribution of carbide within a thin section varies from meteorite to meteorite 

and there is heterogeneity, or variations, within a given meteorite. As discussed 

previously, NWA 11121 contains five clasts, three high type clasts (A, B, C) and two low 

type clasts (D, E), in addition to the host material, Figure 10. The locations of carbide 

bearing metal grains are added in Figure 11. Two of the high type clasts do not contain 

carbide and only the smallest (C) contains seven carbide grains. These carbides are 

located entirely on what appears to be the edge of the clast. Of the two low type clasts, 

only D contained carbide. It can be inferred that type 3 material alone is not enough for 

the formation of carbide as not every type 3 clast contains carbide. Additionally, NWA 

11121 displays a heterogeneous distribution of carbide in the host material. The carbides 

cluster loosely together in several areas, i.e. to the left of clast A, above clast B, to the 

right of clast D, and to the left of clast C (Figure 11). Otherwise they are dispersed more 

sparsely through the rest of the host material with larger areas containing fewer carbides 

than the clusters. 

Figure 12 illustrates the carbide distribution in NWA 10518. Other than the host 

material, there are two high type clasts (A, B) and two patches of shock melt (S) present 

in thin section. Of the four areas, only one of the high type clasts contains carbide, 

marked “A” on Figure 12. Clast A has 14 carbides, most of which occur near the 

boundaries of the clast. NWA 10518 has a more homogenous distribution of carbide 

when compared to NWA 11121 in regard to the host material. While there are no visible 

clusters, there are two small areas in the host that contain no carbide. This includes an  
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Figure 11. Carbide distribution map of NWA 11121 (CML0172-3). Carbide locations are 

marked in red boxes while the dark purple boxes mark non-carbide bearing metal grains. 

The three high-type clasts are denoted using “A”. “B”, and “C” while the low-type 

clasts are labeled “D” and “E”. The host material is marked accordingly. Base image: 

inverted reflected light, image color enhanced. 
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Figure 12. Spatial distribution of carbides in NWA 10518 (0157-2). Carbide locations 

are marked in red boxes while the dark purple boxes mark non-carbide bearing metal 

grains. The two high-type clasts are denoted using “A” and “B” and the shock melts are 

labeled “S”. The host material is marked accordingly. Base image: inverted reflected 

light, image color enhanced. 
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area approximately two millimeters below the upper shock melt in an area devoid of 

metal, and an area about one millimeter above clast B (Figure 12). 

The carbide distribution of Buck Mountain Wash in regard to lithology is shown 

in Figure 13. The left side of the thin section (A) is mixed lithology, containing both high 

and low-type material while the right (B) is just type 3 material. The mixed lithology also 

contains a patch of shock melt, outlined in green, which contains no carbide. The low 

type material on the right contains many carbide grains. Few metal grains were found to 

contain no carbide. The mixed-type lithology contains far fewer carbides, arranged in a 

more heterogeneous distribution, which has no visible correlation to the boundary 

between the two textures (cyan line). There are two clusters of carbides, one to the left of 

the shock melt and the other below the shock melt, close to the boundary.  
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Figure 13. Buck Mountain Wash (CML 0144-2B) illustrates a striking example of the 

spatial distribution of carbide. Carbide locations are marked in red boxes while the dark 

purple boxes mark non-carbide bearing metal grains. On the right is the low type 

lithology (B) that is dominated by the presence of carbide. The mixed lithology on the left 

(A) contains fewer carbides. The mixed lithology on the left also contains shock melt (S) 

that contains no carbide. Base image: inverted reflected light, image color enhanced.  
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Textures and Mineralogy 

Many of the metal grains that host carbide are plessite, a mixture of both kamacite 

and taenite within a metal grain. Three categories were used to describe the textures of 

the kamacite and taenite mixtures that contained carbide. These are fine plessite, coarse 

plessite, and blocky intermixture. Three additional categories were used for when none of 

the previous named mixtures were applicable: these were largely kamacite, largely 

taenite, and largely carbide (Figure 14).  

Fine plessite was categorized as a fine-grained intermixture of kamacite and 

taenite where the space in between the taenite lathes was five microns or less, Figure 14d. 

Coarse plessite was much the same except that the space between the taenite grains was 

greater than five microns, Figure 14e. Figure 14f is a texture called blocky, where 

kamacite and taenite are still both present in large amounts in the metal grain but 

kamacite and taenite exist as more globular structures and each mineral is larger than 

what is seen in plessite.  

The largely kamacite, largely taenite, and largely carbide textures (Figure 14a, b, 

and c respectively) were used when no other mineral phase are present in any significant 

amount. Figure 14a is an example of largely kamacite where the red circles are marking 

small taenite grains. Since the amount of taenite is miniscule in relation to the kamacite, 

and neither of the three textures involving both kamacite and taenite describe the texture, 

this is called largely kamacite. Figure 14b  
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Figure 14. The six metal textures observed to host carbide are pictures above. C = 

carbide, K = kamacite, Ta = taenite, F. Pl = fine plessite, C.Pl = coarse plessite. A: 

largely kamacite, the red circles indicate small taenites, which while present are not 

enough to count the grain as another texture. Image from NWA 10516 (CML0020-2), 

photo designation 0020-2-C-12. B: largely taenite. Image from NWA 11121 (CML0172-

3), photo 0172-3-C-71. C: largely carbide, the red circles indicate small taenites. This 

grain is also the largest carbide found yet. Image from Buck Mountain Wash (CML0144-

2B), photo 0144-2B-C-037. D: fine plessite, the distance between the taenite lathes is 5 

microns or less. Image from NWA 10454 (CML0139-2), photo 0139-2-Carbide-52. E: 
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coarse plessite, the distance between the taenite lathes is greater than 5 microns. Image 

from NWA 10517 (CML0142-1), photo 0142-1-C-152. F: blocky, the intermixture of 

kamacite and taenite are larger than plessite and have a more globular, blocky look. 

Image from NWA 10518 (CML0157-2), photo 0157-2-C-513. Images have been color 

enhanced. All images reflected light, color enhanced.  

is the equivalent but for taenite. Other than the carbide, there is no other metal seen, so it 

is largely taenite. Lastly, Figure 14c is largely carbide. The two red circles are small 

taenite grains while the rest of the grain is carbide. This is also the largest carbide grain 

(~375 x 200 microns) found during this study.  

The number of carbide grains found per metal texture was also examined, Table 

3. For each meteorite thin section, the number of carbide photos and its percentage is 

given for each textural type with the total in the last column on the right. With the 

exception of NWA 10454, coarse plessite grains are relatively rare in occurrence 

compared to other textural types, with an abundance of less than 10 percent. Largely 

carbide is similar, where the percentages of occurrence is usually less than three percent, 

with the exception of Buck Mountain Wash and NWA 11121, which respectively have 

occurrence percentages of 16.9 and 42.5. Most often, carbide is primarily found with both 

kamacite and taenite present in the same grain, either in the form of fine plessite, coarse 

plessite, or blocky grains. These texture types comprise ~67-75% of the metal grains 

associated with carbide in NWA 10516, NWA 10454, NWA 10517, and NWA 11121 

(Table 3).  

An exception is NWA 11121, which has most of its carbide occurring in largely 

carbide, largely kamacite, and largely taenite textures. Buck Mountain Wash is similar; 
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however, it has a large portion of carbide occurring in the blocky mixture between 

kamacite and taenite. 

Table 3. The occurrence of carbide by the texture of the host metal. 

Meteorite 

Blocky 

Mixture  

Largely 

Kamacite 

Largely 

Carbide 

Plessite 

Coarse  

(>5 mic) 

Plessite 

Fine  

(<5 mic) 

Largely 

Taenite Totals 

NWA 

10516 

39 28 1 8 74 8 158 

24.7 17.7 0.6 5.1 46.8 5.1 100.0 

San Juan de 

Allende 

37 18 2 1 1 30 89 

41.6 20.2 2.2 1.1 1.1 33.7 100.0 

NWA 

10454 

4 16 1 14 39 3 77 

5.2 20.8 1.3 18.2 50.6 3.9 100.0 

NWA 

10517 

40 39 0 8 97 21 205 

19.5 19.0 0.0 3.9 47.3 10.2 100.0 

Buck 

Mountain 

Wash 

27 38 21 7 8 23 124 

21.8 30.6 16.9 5.6 6.5 18.5 100.0 

NWA 

10518 

137 117 7 53 194 65 573 

23.9 20.4 1.2 9.2 33.9 11.3 100.0 

NWA 

11121 

20 29 65 5 11 23 153 

13.1 19.0 42.5 3.3 7.2 15.0 100.0 

 

Figure 15 illustrates the occurrence of carbide by textural type of host metal. The 

amount of carbide that occurs in largely kamacite is roughly the same across all seven 

samples. Largely taenite, fine plessite, and largely carbide vary widely across the 

different meteorites. Coarse plessite has a lower occurrence rate than the other host metal 

textures, as stated previously, and so it does not vary as much as some textures. The 

blocky textures do vary, but like the coarse plessite, they do not vary as much as other 

textures. However, unlike coarse plessite, it frequently represents a larger portion of the 

occurrence of carbide. Blocky, fine, and coarse plessite represent different intergrowth 

scales and nucleation between taenite and kamacite, and carbide occurs in all three 
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textures to various degrees. When plessite is present, carbide is found dominantly in the 

fine plessite over the coarse plessite. There is a general anticorrelation between blocky 

and total plessite regarding the presence of carbide. San Juan de Allende has almost no 

plessite hosting carbide, but it has the largest percentage of blocky texture hosting 

carbide. In NWA 10454, which has the most plessite, there is the least amount of blocky 

texture.  

 

Figure 15. The distribution of carbide with respect to the texture of the host metal, in 

percentage of occurrence.  

The location of carbides in their host metal was also examined. The total number 

of carbide grains in three meteorites were examined for their position in each metal grain. 

The two possible positions were inside the host metal and on the edge of the host metal. 



35 

 

The results are listed in Table 4. The numbers are presented in percentages while the total 

number of carbides in the meteorite is given by “N”. These numbers differ from the 

previous graph because every carbide in each photo was individually counted rather than 

each photo being considered as a whole. Carbides are predominantly found on the edge 

of metal grains. Carbide grains found on the inside of metal grains, are always in contact 

with another mineral phase or a fracture. This is consistent with the highest percentages 

of carbides found on the inside of grains being in fine plessite and blocky textured metal 

grains, both of which have multiple kamacite-taenite interfaces deep within metal grains. 

Carbides are not observed to occupy space inside of a metal grain without being in 

contact with another phase or fracture.  

Carbides can exhibit euhedral, subhedral, and anhedral shapes. The carbide grains 

tend to be subhedral, with several crystal faces visible, however there are carbide grains 

that are anhedral lack crystal faces. The occasional euhedral carbide has also been 

observed. Figure 16 has two carbides that illustrate the subhedral and anhedral textures. 

The subhedral grain marked C2 has several prominent crystal faces marked by white 

arrows while the rest of the grain has no distinct crystal faces and is rather smooth and 

irregular in shape. C1 is an anhedral grain, it is smooth and irregular in shape with no 

visible crystal faces. An example of a euhedral carbide grain can be seen in Figure 17. It 

has distinct crystal faces on all six sides of the grain and appears symmetrical. Very few 

euhedral carbide grains have been found. 

Several additional features have been observed in carbides. These are taenite 

rimming, troilite intergrowths, budding texture, anhedral formations, and carbide-
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magnetite assemblages. Regarding taenite rimming, it has been observed that taenite will 

occasionally form a thin rim on the edge of carbide grains. Taenite rims on carbides have 

been mentioned by Fang et al., (2010). During this study, the taenite rims were observed 

to occur in all meteorite samples except for San Juan de Allende. The frequency of the 

taenite rims is not uncommon; however, it does vary from meteorite to meteorite. NWA 

10454 had only one observed taenite rim while NWA 10518 had 150 occurrences.  

Table 4. Occurrence (%) of carbide by position in host grain 

    

NWA 

10516 

(0020-2) 

NWA 

10518 

(0157-2) 

Buck 

Mountain 

Wash  

(0144-2B) 

Largely 

Kamacite 

Edge 13.4 13.6 17.0 

Inside 0.0 0.2 2.9 

Largely 

Taenite 

Edge 2.4 6.6 11.1 

Inside 0.3 0.5 0.7 

Plessite 

Fine (<5 

um) 

Edge 37.3 35.9 4.4 

Inside 20.1 9.4 0.2 

Plessite 

Coarse (>5 

mic) 

Edge 4.0 7.9 3.4 

Inside 0.5 3.0 7.1 

Blocky 

Texture 

Edge 18.0 19.0 17.9 

Inside 3.2 2.0 21.6 

Largely 

Carbide 

Edge 0.5 1.8 13.0 

Inside 0.3 0.0 0.5 

All types 
Edge 75.6 84.8 66.8 

Inside 24.4 15.2 33.2 

  Total % 100 100 100 

  N 373 1564 407 

 



37 

 

 

Figure 16. Subhedral and anhedral textures can be observed above in NWA 11121 

(CML0172-3), inset from photo 0172-3-C-20. C1 illustrates an anhedral texture, where 

the edges of the carbide are smooth, rounded, and misshapen. C2 is a subhedral grain, 

several sharp crystal faces are pointed out by the arrows while the rest of the grain lacks 

the crystal faces. Reflected light image, color enhanced. 
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Figure 17. The carbide grain labeled “C” is an example of a euhedral grain found in 

NWA 10516. Photo 0020-2-C-44 (thin section CML 0020-2). Reflected light image, color 

enhanced.  

Figure 18 and Figure 19 illustrate the taenite rims on carbide minerals. In Figure 

18, the carbide grain C1 has a taenite rim along much of its length, the black arrows point 

out prominent parts of the rim. There are parts of C1 that do not have a taenite rim. As 

carbide grains frequently occur on the edge of metal grains, it would not be possible for 

the carbide to be entirely surrounded by a taenite rim in such cases. Additionally, there 

are parts of the carbide grain that face into the metal that do not have a taenite rim. 

Therefore, a carbide was considered to have a taenite rim if part of the carbide had a thin 

layer of taenite while kamacite was on the other side of the taenite. If a carbide is 

surrounded by thick taenite layers or the carbide occurred in a largely taenite grain, this 

was not considered a taenite rim.  
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Figure 19 has additional examples of the taenite rims. Black arrows indicate 

prominent parts of the taenite rim. In Figure 19A, the large carbide on the inside of the 

metal grain has large areas where there is no taenite rim before the rim appears in 

irregular intervals. For the carbide on the upper left, only the inner facing side is 

considered to have a taenite rim as the taenite is too thick near the edge to be regarded as 

rim. The carbide is an excellent example of a taenite rim as it follows for much of the 

length as the grain wraps around, forming a rough bridge in shape. Figure 19B has a 

carbide in the center that is an example of irregular taenite rims. Only small parts of the 

grain have the taenite rims but as they are still visible as thin rims of taenite. The carbide 

is still considered to have a taenite rim, especially given the presence of additional taenite 

rims with the carbides to the bottom and left.  

Troilite intergrowths associated with carbide are an additional feature seen in 

some meteorites. Not as common as the taenite rims, the troilite intergrowths generally 

occur inside of the metal grains, rather than on the edges. Figure 20 and Figure 21 are 

representative examples of some of the troilite intergrowths seen during this study. The 

troilite appears inside of the metal in irregular, globular grains. Troilite is present as an 

adjacent grain at the edges of the metal grain when the troilite particles are inside of the 

metal.  

These observations are consistent with an investigation by Tomkins (2009) that 

identified the relationship between the troilite inclusions in metal and shock. Tomkins 

(2009) found that the irregular heating from the shock wave propagation could account  
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Figure 18. Example of a taenite rim (cream-colored) on carbide C1 from NWA 10516. 

Carbide C2 is an example of a subhedral carbide grain where several crystal faces can 

be seen. This carbide image has the designation 0020-2-C-108. Reflected light image, 

color enhanced.  

for the troilite inclusions. Sulfur from the troilite on the outside of the metal is liberated 

by heat and diffuses into the metal. This has the net effect of small amounts of troilite 

forming inside of the metal. Tomkins (2009) gives an upper limit of 911°C for this 

process to occur, due to the solubility of sulfur. He argues that shock is most likely to 

produce the troilite inclusions because it accounts for the irregularity of the inclusions in 

meteorites and thin sections, produces enough heat to liberate the sulfur without melting 

the silicates or other metals, and can cause flaws in the metal that allow the sulfur to 

diffuse farther into the metal (Tomkins 2009).  
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Figure 19. Photos A and B illustrate taenite (cream-colored) rimmed carbide (light tan) 

grains from NWA 10517 and NWA 10516. Photo A (0142-1-C-109) and B (0020-2-C-80) 

have the area of interest inset to more easily illustrate the rim on the carbide grains. 

Photo A also shows an interesting pattern to the carbide growth, where the carbide 

appears to curve around the kamacite (light blue). Reflected light image, color enhanced. 
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The textures that Tomkins (2009) described have been seen in several meteorites 

in this study, including NWA 10518, which is pictured in Figure 20 and Figure 21. The 

troilite inclusions are associated with carbide, as they share the same host metal. The 

carbide has also been noted in both figures.  

An uncommon carbide texture that has been observed is the so called “budding” 

texture. It is characterized by multiple carbide grains projecting and seeming to nucleate 

from a taenite grain. Figure 22 gives two examples of this texture. In Figure 22a, the 

large metal grain has this budding texture surrounding every occurrence of taenite. The 

two insets give a larger view of the texture. In this texture, the carbides do not appear to 

“eat” into the taenite grain so much as grow off of it, given that the taenite is of relatively 

 

Figure 20. Troilite intergrowths in NWA 10518 (CML0157-2). Troilite (Tr) appears as 

globular, anhedral metal blebs inside of the host grain, blue arrows bracket the potential 

troilite trail. Complete troilite appears on the edges of the image as well as on the edges 

of the metal grain. C = carbide. Reflected light image 0157-2-C-218 has been color 

enhanced. 
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Figure 21. Additional troilite (Tr) intergrowths in NWA 10518 (CML0157-2). Troilite 

inclusions are small metal blebs scattered around the inside of the host metal. Blue 

arrows bracket the troilite trail. C = carbide. Reflected light image 0157-2-C-220 has 

been color enhanced. 

uniform width. Figure 22a also has silicate inclusions scattered around the inside of the 

host metal. Most commonly, silicate minerals are observed to occur separate from the 

metals, not as inclusions. Figure 22b is another example of the budding texture that 

occurs in the same meteorite. This texture was primarily observed in Buck Mountain 

Wash, in the low type lithology.  

Extreme anhedral textures for carbide that could represent intergrown grains were 

documented in all meteorites in this study. The complex intergrowths can be seen in 

Figure 23 and Figure 24. Figure 23 has the carbide forming adjacent to taenite laths and 

long parallel stretches of carbide can be seen in several places. Small islands of taenite 

exist inside the mass of carbide. Figure 24 is a complex intermixture that features a 

variety of textures. There are budding textures (area 1), taenite rims (area 2), and 
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subhedral textures along with the main anhedral mass. This type of anhedral texture is 

more rare than any other textures but is also more striking in their unorthodox 

appearance.  

For an assemblage to be a CMA, it must feature a close spatial relationship 

between magnetite and carbide. For the purposes of this paper, a CMA is defined as an 

assemblage of metal grains that contains both carbide and magnetite, with both touching 

or in extremely close proximity such that it is likely they are touching in another cut of 

the thin section. This is seen below in Figure 25 and Figure 26. Figure 27 and Figure 28, 

by this definition are not CMAs because although magnetite is in the image, it is not in 

sufficiently close proximity to the carbide. 

Several CMAs have been identified in the meteorites involved in this study, such 

as in Figure 25 and Figure 26 from NWA 10518 (CML 0157) where magnetite was 

identified either in contact with carbide or occupying the same metal grain as the carbide. 

However, the layered textures described by Krot et al (1997) do not occur in the 

meteorites in this study. Figure 25 is the closest example of the CMA Krot et al (1997) 

describe, but it differs in that the carbide occurs in one kamacite grain rather than as 

individual grains in the CMA or as a single grain attached to another metal grain. Krot et 

al (1997) also described their carbides as being irregularly shaped inclusions or as 

intergrowths with taenite while many of the carbides in Figure 25 are subhedral. Unlike 

those observed by Krot et al. (1997), carbide rims are not found as the outer layer around 

the CMAs in this study. Carbides in this study primarily occur in single metal grains  
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Figure 22. Budding texture from Buck Mountain Wash. A is image 0144-2B-C-120 and B 

is image 0144-2B-C-118. C = carbide, Ta = taenite, K = kamacite. The red circle in (a) 

refers to silicate inclusions present in the metal. Reflected light images, color enhanced.  
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Figure 23. Anhedral formation of carbide NWA 10454 (CML0139-2). The fine-grained 

plessite is denoted by F. Pl, taenite with Ta and carbide with C. Reflected light image 

0139-2-Carbide-80, color enhanced. 

 

Figure 24. Complex, anhedral formation of carbide in NWA 10518(CML0157-2). Taenite 

= Ta, kamacite = K, fine plessite = F. Pl, and carbide = C. Several areas of interest have 

been numbered, a miner budding texture can be seen at 1, taenite rims at 2, and 

subhedral textures at 3. Reflected light image 0157-2-C-470 has been color enhanced.  
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rather than as a layered assemblage of various metal phases, which is the texture 

primarily seen by Krot et al (1997). 

Table 5 examines the distribution of magnetite grains with respect to carbide. 

Three classifications were assigned, including 1) the presence of magnetite in the image 

with no contact with carbide or the host grain, 2) the presence of magnetite in the host 

grain of carbide but not in direct contact, and 3) the presence of magnetite in direct 

contact with carbide. The last category is what this study refers to as a “CMA”. Finally,  

 

Figure 25. Example of a carbide-magnetite assemblage in NWA 10518. Several grains 

have been marked with their identifying corresponding letter. Carbide = C, magnetite = 

M, troilite = Tr, taenite =Ta, kamacite = K, and other oxide grains marked with arrows. 

Reflected like image of 0157-2-C-185, color enhanced.  
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Figure 26. Illustrates a CMA example where carbide is in contact with magnetite and 

also distinct from magnetite, from NWA 10518. Carbide = C, magnetite = M, troilite = 

Tr, taenite =Ta, kamacite = K, and weathering product (iron hydroxide) = W. Reflected 

light image has been color enhanced and was given the designation 0157-2-C-109. 

the percentage of CMAs for the whole meteorite thin section was determined and this is 

reported in the last column of Table 5. In two meteorites, the presence of CMAs is greater 

than ten percent of the total carbide grains while in the other instances they are no more 

than 4.5 percent of the total. The occurrence of magnetite not in direct association with 

carbide was much more frequent than the CMAs while the majority of carbide grains 

have no association with magnetite in any of the three categories.  
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Figure 27. Carbide and magnetite share the same grain but where the magnetite is not in 

contact with carbide, from NWA 10518. Carbide = C, magnetite = M, troilite = Tr, 

taenite =Ta, kamacite = K, and other oxide or hydroxide = Ox. Reflected light image 

0157-2-C-284, color enhanced.  
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Figure 28. Example from NWA 10454 where magnetite exists separately from carbide 

and host metal grain. Most frequent occurrence of magnetite is like this. Designation 

0139-2-Carbide-52. Photo color enhanced. This picture was also seen in Figure 14. 

 

Table 5. Summary of the presence of magnetite and its relationship to carbide 

Meteorite 

Magnetite 

in image 

Magnetite in 

grain with 

carbide (not 

in direct 

contact) 

Magnetite in 

contact with 

carbide 

(“CMA”) 

“CMA” % of 

total carbide 

grains 

NWA 10516 36 11 6 3.8 

NWA 10518 211 14 25 4.4 

Buck Mountain Wash 38 6 21 16.9 

San Juan de Allende 6 1 0 0 

NWA 10454 14 6 0 0 

NWA 10517 42 13 5 2.4 

NWA 11121 34 3 18 11.8 
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Compositions 

To calculate the compositions of the carbide minerals, a correction procedure had 

to be applied. This procedure was discussed in detail in the methods section of this paper. 

Figure 29 shows the results of the correction procedure. Figure 29a includes the 

background carbon from the carbon coat across all metal phases. The results of the 

correction procedure can be seen in Figure 29b. The carbon in kamacite has been zeroed 

out. Many of the taenites also had their carbon content reset to zero, however a number of 

the taenite grains still display positive carbon values. With the exception of one value, 

there is a gap in the taenite values, between zero and approximately 0.3. This gap could 

be a threshold for the correction procedure in taenite and values above that threshold 

could represent non-zero carbon values in taenite.  

The compositions of the carbides were explored by plotting the apparent corrected 

carbon values in weight percent against the nickel weight percent of the iron and nickel, 

Figure 30a. Two populations became apparent, at 1.75 and 5 wt% on the x-axis. The data 

populations have a spread to them, mainly in the C content, but within each spread there 

are groupings. These groupings are averaged and replotted with the standard deviations in 

Figure 30b, with the outliers left as the gray symbols. Furthermore, the carbon values for 

four carbides were added as lines for compositional comparison.  

Carbide group A plots close to the cohenite line in Figure 30b, and carbide B is 

close to the haxonite line. Carbide C does not correlate with a known carbide. The 

averaged weight percent values for the three carbide groups in Figure 30b can be found in 

Table 6. Hutson et al., (2016) provided the data for the cohenite and haxonite columns, 
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Figure 29.The results of the correction procedure can be seen above. The top graph (a) 

shows the data before the correction was applied and b is the data after the correction 

was applied.  
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Figure 30. A: the nickel weight percent against the apparent corrected carbon weight 

percent. Two distinct populations are seen, at 1.75 and 5 on the x-axis. These are further 

explored in B, in which clumps are averaged and outliers left out. Four carbides were 

plotted as lines based on their carbon weight percent as comparison. Other carbides are 

known to exist but not relevant for this study. Averages and standard deviations can be 

found in Table 6. One data point is covered by the legend and excluded from 

calculations. 
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which was collected through an EMP study with no correction procedure for the data. 

Standard deviations are shown in parentheses to the side of each value. The carbon values 

of Hutson et al. (2016) differ somewhat from the data collected during this study and to 

the carbon lines seen in Figure 30b. In regards to this study, uncertainties include 

assuming an even carbon coat and that there was no carbon present in kamacite. 

Additionally, Hutson et al. (2016) used cobalt (Co) as the element for plotting and 

carbide identification while carbon was used in this study. Therefore, the data for this 

study is approximate in comparison and normalized to 100. However, the carbon values 

obtained by Hutson et al, (2016) differ also from the stoichiometric carbon values seen in 

Figure 30b. Cohenite has a carbon weight percent value of 6.7 and haxonite 5.3. Carbide 

group A has been tentatively identified as cohenite based on the average carbon value of 

6.8 wt%, which is close to the ideal 6.7. Carbide group B has an average value of 5.5 

wt% C and has been given the designation of haxonite. 

The correction procedure applied for this study yielded group A and group B, 

which are close approximations to two carbides, cohenite and haxonite. The nickel and 

iron contents for the 

Table 6. Inferred composition of carbides using correction technique (normalized to 100 

for A, B, and C) with standard deviations 

  A B C Cohenite* Haxonite* 

Fe wt% 91.6 (0.2) 89.8 (0.3) 90.9 (0.3) 91.2 (0.6) 89.7 (0.7) 

Ni wt% 1.6 (0.1) 4.7 (0.2) 4.9 (0.2) 1.7 (0.1) 4.5 (0.2) 

C wt% 6.8 (0.2) 5.5 (0.2) 4.4 (0.3) 4.7 (0.2) 4.8 (1.0) 

n  23 30 23 6 100 

* Data courtesy of Hutson et al., 2016   
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corresponding haxonite and cohenite groups are similar in this study and that of Hutson et 

al. (2016), which also separate both groups on the x-axis on the plots in Figure 30 and in 

the Co vs Ni plots in Hutson et al, (2016). While the carbon values vary between the 

datasets, the populations plot similarly and likely represent the same minerals. Apparent 

differences in C contents mostly could stem from the different correction procedures 

used.  

Carbide group C does not have a C content of a known carbide phase and instead 

plots in between haxonite and Fe6C. This could represent submicroscopic mixtures of 

different types of carbide grains, which could result in a blended composition. 

Alternatively, a hypothetical carbide with the formula Fe5C would have a carbon weight 

percent of 4.1, which would closely correspond with the group C carbide. However such 

a carbide has not been found to exist. Alternatively, experimental error was large enough 

to effect carbide group C and throw the value off of ideal and those grains are either 

haxonite or Fe6C. 

Interestingly, the cohenite was only found in the H chondrites, Buck Mountain 

Wash and NWA 11121 and the iron meteorites Monteview and Canyon Diablo. 

However, both Buck Mountain Wash and NWA 11121 also have haxonite present, as 

shown in Figure 30a. The carbides that plot at 5 wt% Ni  are more abundant than the 

cohenite group at approximately 2 wt% Ni . Sampling more carbide grains could yield a 

larger population of cohenite grains, but currently they were found only in H chondrites.  
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Cooling Rates and Closure Temperatures 

Two meteorite samples were investigated for in-depth cooling rate analysis, NWA 

11121 and NWA 10518. Three types of Ni zoning patterns were 1) the regular “M” 

profile of taenite, 2) a reheated profile (flat interior), and 3) asymmetric profile where the 

center was not the lowest nickel content. Figure 33 illustrates all three profiles. For the 

reheated profiles, the radius was equated to the distance across which Ni is zoned upward 

sharply to the highest nickel rim, as a measure of the diffusion distance during cooling 

following a reheating event that homogenized the core. Asymmetric profiles had their 

radius determined by measuring from the lowest nickel content to the highest nickel 

content rim. A possible bias affecting the data would be a sectioning bias based on where 

the linescan was taken. This was minimized by taking care to align the linescan across the 

center of the taenite grain as much as possible. 

These three profiles are plotted separately on metallographic cooling plots in 

Figure 31 and Figure 32 as circles, down triangles, and x’s corresponding to regular, 

reheated, and asymmetrically zoned grains, respectively. Figure 31 illustrates the results 

obtained from NWA 11121 and Figure 11 shows the thin section with the marked clasts. 

The high-type (HT) clasts show a distinct, slower cooling rate than either the low-type 

(LT) clasts or the carbide bearing host material, this is seen in the red symbols in graph 

A. The reheated and asymmetrical symbols (down triangles and x’s) show a systematic 

offset to the left from the regular taenite profiles, which could be indicative of a resetting 

or reheating event. The carbide bearing host grains plot with the low-type (LT) clasts, 

however they also show a wider distribution along the x-axis but still indicate faster 
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cooling than the high-type (HT) material. The reheated carbide bearing host grains in the 

lower right of graph B are significantly shifted down and to the right at relatively fast 

cooling rates, which can be explained by rapid cooling following a reheating event that 

homogenized the central Ni content of the taenites.  

Figure 32 demonstrates the cooling environments for NWA 10518 and the 

lithologies and clasts can be seen in Figure 12.. The carbide bearing host material seems 

to indicate the presence of diverse cooling environment in the amount of scatter among 

the points. For the carbide bearing host material, the reheated profiles differ from the 

regular profiles. This could be due to the small grains that allowed diffusion across the 

entire grain, giving a complete profile rather than a reheated, or asymmetrical profile for 

the larger taenite grains. The presence of shock melt in NWA 10518 means that locally 

reheated grains could have been reset more than grains farther from shock melt. These 

reheating events imply that faster cooling rates represent cooling under later reheating 

events while the slower cooling rates are older events.  

It should be noted that NWA 10518 (L3-6) and NWA 11121 (H3-6) represent 

different parent bodies, indicated by the L and H in the classification (Burbine et al., 

2002). The way in which brecciation and heating occurred on these two bodies may have 

differed, with evidence for slower cooling preserved more in the H chondrite.   

Additionally, from the taenite linescans, the estimated temperature formation 

range for carbide minerals was determined using a digitized version of the Fe-Ni phase 

diagram from Willis and Goldstein (1981). The core and rim nickel values of the taenite 

linescans record different temperatures. The core of the taenite grain records the 
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Figure 31. Cooling rates from taenite grains in NWA 11121 (CML 0172), separated by 

clasts, and carbide bearing host grains. HT stands for high-type clasts, and LT for low-

type clasts.  

temperature at the start of cooling while the rims capture the closure temperatures of the 

taenite grains (Wood, 1967). Figure 31 and Figure 32 were created using only the core 

nickel values, to determine the cooling rate. Table 7, which is based on Schepker (2014), 

has the average temperatures of both the core and rim of the taenite grains, as well as the 
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Figure 32. Cooling rates from taenite grains in NWA 10518 (CML 0157), separated by 

clast, host, and carbide presence. HT stands for high-type clasts, and LT for low-type 

clasts. 

standard deviation, minimum and maximum for the three lithologies in NWA 10518 and 

NWA 11121. Both meteorites record similar temperature ranges for the core and the rim. 

No lithology is substantially different from the others, given the standard deviations. The 

digitized phase diagram created by Schepker (2014) matched closely with the published 
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Figure 33. The three types of taenite profiles observed. In all three profiles, the cyan line 

is iron and the blue line is nickel. A: the classic “M” profile of a taenite grain, collected 

from NWA 10518, Line Data 13. B: The flat interior (reheated) taenite profile, from Buck 

Mountain Wash, Line Data 8. C: The asymmetric taenite profile, from NWA 11121, Line 

Data 1.  
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Fe/Ni phase diagram from Scorzelli (2008). The mismatch implied an estimated accuracy 

within 10°C, and so two significant figures were used to report the data in Table 7.  

Table 7. Temperatures (°C) from core and rim values in taenite associated with carbide 

to estimate carbide formation range 

NWA 10518 Average St Dev Minimum Max Count 

HT Clast 
Core 630 40 560 690 12 

Rim 380 30 330 410   

Host 
Core 580 60 500 650 5 

Rim 370 30 340 400   

Host w/C 
Core 640 70 470 750 33 

Rim 380 50 300 570   

NWA 11121           

HT Clasts 
Core 580 40 510 660 34 

Rim 390 60 340 560   

LT Clasts 
Core 620 50 540 690 15 

Rim 430 40 360 490   

Host w/C 
Core 670 60 550 750 15 

Rim 370 40 320 410   

 

Romig and Goldstein (1978) provided the experimental data for the formation of 

cohenite in Fe-Ni-C systems. The system begins with taenite that then decomposes into 

kamacite and cohenite. Four isotherms were examined by Romig and Goldstein (1978); 

730°C, 650°C, 600°C, and 500°C. Carbide does not begin to coexist with kamacite and 

taenite until the temperature has cooled to 650°C and then is present through the 600°C 

and 500°C isotherms (Romig and Goldstein, 1978). 

Okamoto (1992) created a phase diagram for the Fe-C system, Figure 34, for the 

steel making process. The phase diagram covers a larger range of temperatures and more 

clearly illustrates the temperature stability of carbide, which is less than 727°C for low C 

contents. This temperature is implied by the coexistence of kamacite, taenite, and carbide 
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in the carbide-bearing meteorites in this study, and according to the Fe-C phase diagram, 

this can only occur at 727° and below. Both the Fe-C and Fe-Ni-C isotherm phase 

diagrams suggest an upper limit of formation temperature of ~650-730 °C for the 

carbide-bearing metal particles. Ferrite and austenite are the terrestrial equivalents of 

kamacite and taenite. As the temperature decreases, carbide forms with kamacite at the 

expense of taenite over a wide range of bulk compositions. Taenite can hold small 

amounts of carbon, which is eventually decomposes into carbon free kamacite and carbon 

rich carbide. It should be noted that the phase diagram in Figure 34 is metastable and is a 

nickel free system. Additionally, the phase diagrams treat all carbide as cohenite and at 

least two carbide phases has been identified in this thesis. However, it does provide solid 

idea on how the process could have taken place and the temperatures that the phases 

formed at. 
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Figure 34. Phase diagram of the Fe-C system from Okamoto (1992). The terrestrial 

analog for kamacite is ferrite (alpha), taenite is austenite (gamma) and cohenite is 

cementite. Ledeburite and pearlite refer to texture types that contain carbide. As the 

temperature decreases, carbide forms with kamacite at the expense of taenite. 
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Discussion 

Origin by aqueous alteration 

Previous research by Krot et al. (1997) supported carbide formation through 

aqueous alteration of iron in metal-troilite nodules. The possible reaction sequence was 

discussed in the background section of this paper. However, other than the occasional 

presence of magnetite, no other evidence of aqueous alteration was found during the 

course of this study. Furthermore, it was noted that the textures of the CMAs found by 

Krot et al. (1997) differ significantly from this study, as mentioned in the Textures and 

Mineralogy portion.  

Table 5 summarized the presence of magnetite and its relationship to carbide. 

While magnetite can be seen in the same field of view as carbide-bearing metal phases 

with some frequency, the CMAs are rarely seen. In San Juan de Allende and NWA 

10454, no CMAs were found to occur. NWA 10516, 10517, and 10518 had CMA 

percentages that were less than 4.5%. Buck Mountain Wash and NWA 11121 were the 

only two meteorites that had higher CMA occurrences, at 21% and 18% respectively. 

CMAs do not regularly occur in conjunction with carbide and thus do not strongly 

support aqueous alteration.   

Due to the textural differences observed between the images and descriptions 

provided by Krot et al (1997) and those seen in this study, it is possible that carbides have 

several possible methods of formation. The observations and images referenced by Krot 

et al (1997) may be indicative of formation through aqueous alteration while the carbides 

in this study argue for a different formation hypothesis, discussed in more detail below. 
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Additionally, the presence of magnetite alone is not enough to argue formation through 

aqueous alteration. No other hydrous minerals were found during microscopy. Bleached 

chondrules are another possible indicator of aqueous alteration, which are radial and 

cryptocrystalline chondrules that have a porous outer layer, visually distinguished by a 

“bleached” area, or light gray to white, in the chondrule (Grossman et al, 2000). These 

were not found to occur in the carbide-bearing meteorites. Based on this evidence, and 

that listed above, it is unlikely that the carbide minerals in this study formed through 

aqueous alteration. 

If carbides formed through aqueous alteration, carbides would primarily form on 

the edges of grains, similar to bleached chondrules, rather than in the grain interior. Table 

4 indicates the occurrence of carbide by location on the edge or inside of the host metal 

grain. While many of the carbides do occur on the edges of grains, up to a third of them 

occur on the inside of host grains. The occurrence of these carbides is not be easily 

explained by aqueous alteration and it is unlikely that they formed through aqueous 

alteration. 

A final potential problem with the aqueous alteration hypothesis for carbides is 

that even CMAs may not have formed purely by aqueous alteration. Keller (1998) studied 

carbide particles in Semarkona and suggested that the carbides there formed during 

prograde metamorphism, distinct from a later, more oxidizing stage at lower temperatures 

that formed rims of magnetite. In this case, the association of magnetite with carbide 

would not indicate simply one process but rather two different processed occurring at 

different times.  
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Origin by thermal metamorphism 

If carbides formed through thermal metamorphism, a correlation between 

petrographic type and the presence of carbide would be expected as type 3 chondrites are 

the least metamorphosed and type 6 the most. This would imply that type 6 material 

would contain more carbides. As Figure 7 demonstrates, there does not appear to be any 

such correlation. A complicated, inverse correlation is more likely as type 6 clasts in 

genomict breccias rarely contain carbide. If carbide is present in such clasts, it is in 

quantities far lower than that of surrounding materials, as seen in Figure 11, Figure 12, 

and Table 2. In non-brecciated meteorites, carbide was not found to occur in petrographic 

type 4, 5, or 6 meteorites and only a single type 3 meteorite was found to be carbide-

bearing. All other carbide-bearing meteorites in this study are genomict breccias, which 

contain a mixture of petrographic material, with type 3 always present. Thermal 

metamorphism cannot explain the occurrence of carbide observed. 

Origin by shock heating 

The third formation scenario is through shock heating. There is some support for 

this hypothesis. Shock melt is present either in thin section or hand sample for all the 

carbide-bearing meteorites. Furthermore, troilite injection zones have been found 

associated with carbide in every carbide-bearing meteorite. They are not common, as 

troilite must border the metal grain for them to form. The troilite injections imply that the 

surrounding troilite reached a high enough temperature to potentially form minor melts 

that were then injected into the nearby metal grains (Tomkins, 2009). Hauver and 

Ruzicka (2011) reported the bulk carbon composition of NWA 5964 to be from ~0.1 to 
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1.6 weight percent. When compared to phase diagrams created by Tomkins et al., (2013) 

regarding iron carbides, this places an upper limit of 1350°C for melt temperatures. 

However, the textures surrounding the troilite injections are distinct from those produced 

by the partial melting of the metal, troilite minerals, and the silicates. The troilite grains 

that surround the metal that hosts the injections do not show evidence of melting and 

mobilization (Figure 6). Additionally, no shock melt surrounding the affected grains was 

observed and zoned taenite was preserved near the troilite injected metals. This implies 

that short term, high spikes of temperature occurred to liberate the sulfur from troilite and 

diffuse it into the metal while still remaining subsolidus and leaving the surrounding 

silicate material primarily unaffected (Tomkins, 2009). Additionally, as the troilite did 

not separate out, they must have experienced fast cooling. 

However, if carbides were formed through shock heating, a correlation between 

the presence of carbide and shock stage would be expected. This was not observed, 

Figure 8. The distribution of the carbide-bearing meteorites by shock stage almost 

displays a bell curve distribution. Carbide was also never found to occur in the melt zones 

of meteorites. Further, carbide appears to be destroyed or prevented from forming in 

shock-blackened areas, which show evidence for melting of metal and troilite. For 

example, Figure 5 provides a good illustration of this in that the shock melt contains no 

carbide grains and the shock blackened area, which experienced enough heat to melt and 

mobilize the troilite, see Figure 6, and likely destroyed or prevented the formation of the 

carbide minerals that are present in the melted and shock blackened portions of the thin 

section. Four carbides were found in the shock blackened area, two near the boundary 
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where the rest of the carbide-bearing host material is and two in the largest metal grain in 

that area. The large size of the metal grain likely insulated the carbides and allowed them 

to survive the heating event. Table 2 has the breakdown of carbide location by lithology. 

The shock melt does not contain carbide, shock blackened areas have very few carbides 

that survive, and high type clasts do not have as many carbides and the mixed lithologies 

of the host material or the lower type clasts.   

The relationship between shock heating and the presence of carbide is a 

complicated one. It appears that too much heating can destroy or prevent the carbide from 

forming, as it is never found in melt and sometimes not in heavily shock area, Figure 5. 

However, carbide can be associated with the troilite injections, which are formed through 

shock, and shock melt is present in all carbide-bearing meteorites. 

Impact and Brecciation History 

Carbide minerals require a source of carbon and thus might be related to the 

amount of C present in the chondrites (Jarosewich, 1990). Carbon content in L, LL, and 

H meteorites decreases slightly from L to H, as seen in Figure 35. The transition from 

Type 3 to Type 4 meteorites shows the largest decrease in carbon content and Types 4-6 

show slight differences. H meteorites have a smaller carbon content than the Ls or LLs, 

and so there might be less frequency of carbide found in H chondrites due to less carbon. 

Genomict breccias could have more carbon than a strict type 4, 5, or 6 chondrites. The 

carbon content of the meteorites in this study is an unknown, but the proportion of type 3 

material could be used as a proxy for likely C content, and there might be differences in 

the amount of carbide minerals in different chondrite groups that reflect the average 
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content of C in H vs. L and LL chondrites. The carbide bearing chondrites in this study 

have type 3 material present. The carbon necessary to form the carbides could originate 

in the type 3 material or in other organic material or other mineral phases. It should be 

pointed out that although having sufficient bulk C is probably necessary to create 

carbides, it is not a sufficient condition. Three out of four type 3 and presumably C-rich 

ordinary chondrites were not observed to contain any carbide. Something besides bulk C 

content appears to be critical in enabling carbides to form. 

 

Figure 35. Average carbon contents of ordinary chondrites by class and petrographic 

type. Number of values used in each average indicated at the top of the column. Carbon 

values collected from Jarosewich, 1990.  

With one exception, the chondrites that contain carbide are genomict breccias 

(Figure 7, Table 1, and Table 2) that contain a mixture of petrographic material from 3 to 

6. It is widely accepted that the different petrographic types formed in different cooling 

environments. The onion-shell model is frequently cited as the way ordinary chondrites 
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formed. The model has the higher petrographic types forming deep within an asteroid 

body, where they cool slowly, and the lower petrographic types closer to the surface 

where they cool more quickly and preserve their unequilibrated material (Dodd, 1969). It 

should also be noted that others have suggested parent body disruption and then 

reintegration into loose rubble piles (Scott and Rajan, 1981). Figure 36 is an illustration 

of both models from Scott and Rajan. (1981).  For the purpose of this paper, the onion-

shell model is primarily assumed. In this model, type 6 material forms deep within the 

parent body and is then impact excavated, causing the type 6 material to mix with the 

shallow, cooler material and forming carbide. 

 

Figure 36. Two formation models after Scott and Rajan (1981). A shows the classic 

onion-shell model where the higher type materials form deeper in the parent body with 

the lower type material located progressively outward. B, which is also known as the 

rubble pile model, shows the disrupted and reintegrated model where smaller bodies 

cooled complete before accreting into a parent body. 
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The cooling rates represented for NWA 10518 in Figure 32 illustrate a wide 

scatter and overlap between the high type clast and the host material, which implies that 

the two lithologies were mixed together and then cooled. The cooling rates could have 

varied based on proximity to the heat source, either by depth if the bodies were hotter 

towards to center or towards impact melt deposits if the bodies were primarily heated by 

impact events. The carbide minerals that occurred in taenites sampled for cooling rate 

data and the taenite not associated with carbide had a range of cooling rates that are 

similar to other grains, therefore the carbide could have formed under a range of cooling 

temperatures after the mixing, or approximately 10-1000 K/Ma. This means that the 

carbide wasn’t extremely sensitive to exact formation settings. Additionally, since the 

scatter in cooling rates for the grains sampled had to be maintained, late brecciation likely 

happened after initial cooling so that the grains from different location could be 

reassembled under mostly cool conditions and not reset their cooling rate.  

The wide scatter of cooling rates is also present for NWA 11121 in Figure 31, 

however the high type clast displays a markedly different cooling pattern than the low 

type clast and host material. The host material is a mixture of low and high type, which 

means that a mixing event must have taken place. The cooling rate of carbide falls into 

the 10-1000 K/Ma range, but the slower cooling range is only inhabited by the higher 

type clast material. This indicates that the formation of carbide most likely happened after 

the scrambling of material to make a breccia, under a range of temperature conditions, 

but before the high type clasts were incorporated into the meteorite as the differences in 

cooling rate had to have been preserved. This also implies late brecciation. Both 
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meteorites have a cooling rate of about 10-1000 K/Ma for the carbide, after the 

incorporation of the carbon rich type 3 material. The reheated taenite grains in both 

figures imply that there was some heat after brecciation, but it was not prevalent as many 

grains were not affected.  

Two heat sources are possible for the formation of carbide, radiogenic heating and 

impact heating. Radiogenic heating is consistent with the large volumes of parent 

material experiencing metamorphism, like the onion-shell model would indicate (Bennett 

and McSween, 1996). This would allow the mixing of the hotter type 6 material with the 

cooler and carbon enriched type 3 material to form carbide. This would also be consistent 

with the lack of correlation between the presence of carbide and shock stage. 

Additionally, regarding formation through impact heating, shock melting destroys the 

carbide in any directly affected area. However, the heat from nearby impact melt could be 

enough to cause the formation of carbide.  

Carbide is not stable at high temperatures, as indicated in the phase diagram in 

Figure 34, nor is it stable when in contact with liquid at low carbon concentrations. It is 

only at high carbon contents at the eutectic that carbide can exist in contact with liquid 

and perhaps as a liquid itself. Through phase diagrams (Goldstein and Romig, 1978, 

Okamoto 1992, Figure 34) and the work of Fang et al. (2010), and the textural 

observations of the carbide minerals, it is known that austenite (taenite) formed first and 

has the most carrying capacity for carbon. Kamacite will carry little to no carbon. As 

cooling took place, carbide became a metastable phase as the carbon from austenite was 

formed into a carbide mineral. Fang et al. (2010) also determined that the crystal structure 
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of austenite (taenite) and haxonite (carbide) are extremely similar, which would make it 

more likely for the austenite (taenite) to decompose into carbide.  

The textures in Figure 18 and Figure 19 illustrate the taenite rims that can be 

found on carbide grains, an observation also seen by Fang et al. (2010), which supports 

the idea that the carbide minerals nucleate within taenite rather than kamacite. The 

carbides then grow at the expense of taenite, but in the case of the taenite-rimmed 

structures, did not completely replace all of the taenite. The additional textures seen in 

Figure 22, Figure 23, and Figure 24 further support this idea. In Figure 22, carbide can 

clearly be seen budding off of taenite grains that exist within a larger kamacite. Figure 

23, and Figure 24 are complex intergrowths of carbide where the carbide appears as 

extreme anhedral forms.  

Evidence for carbides forming through shock wave propagation and associated 

with heating and disruption can be seen in the association of carbide with troilite 

inclusions, Figure 20 and Figure 21. Tomkins (2009) argued that the shock wave from 

impact events caused irregular heating, which released sulfur from troilite and injected it 

into other metal phases, leaving an injection trail that could be followed from the outer 

edge of the metal grain to inside, indicated by the blue arrows in Figure 20 and Figure 21. 

Carbon could be liberated from C -enriched material in a similar manner to sulfur and 

follow the same migration pattern into the host metal as the sulfur did, forming carbide 

grains. In Figure 20 and Figure 21, the carbide is found mixed with troilite in the same 

migration paths. As Tomkins (2009) argued, formation through shock wave propagation 

would explain the irregular occurrence of the inclusions within thin sections and 
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meteorite classes. It would also allow enough heat to free the sulfur and carbon but not 

melt the other preexisting minerals. This would also indicate that carbides can form 

through smaller heating events and not at higher temperatures.  

Formation Temperatures 

The best evidence for the formation temperatures of carbides are the closure 

temperatures estimated from coexisting taenite, which indicate they formed at ~370-670 

°C (Table 7). This supports the evidence above that higher temperatures (above 670°C) 

may have mostly led to carbide destruction or prevention rather than growth.  

This temperature range is also consistent with the spatial association of carbide 

with type-3 material (Figure 7). Type 3 material is evidence that carbides did not form at 

high temperatures, as the high temperatures would have equilibrated the type 3 material. 

And type 3 material is present in all the carbide-bearing meteorites, summarized in Figure 

7. According to Huss et al. (2006), petrographic type 3 ordinary chondrites experienced a 

range of temperatures from approximately 200°C to 600°C. Type 3 ordinary chondrites 

are subdivided into further subtypes and the temperature range given above is a very 

broad estimate to encompass all type 3 chondrites. For example, Semarkona is a LL3.00 

meteorite that was given an upper limit of approximately 260°C, much lower than for 

other ordinary chondrites (Huss et al., 2006). Buck Mountain Wash was examined by 

Hutson et al., (2007), who determined that the Lithology B had a classification of H3.4-

3.5 while Lithology A is a type 3-6 mixture (Hutson et al., 2013). Based on the 

temperatures of subtypes summarized by Huss et al. (2006), a subtype of 3.4-3.5 could 

correspond to ~350-600 °C. Further research has given various estimates for the type 3 
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subtypes that fall within the 200°C to 600°C range with most approximations giving the 

temperature range 350°C to 600°C (Huss et al, 2006, Hutchison, 2004), although Scott et 

al. (2014) determined that type 3 H chondrites reached peak temperatures of 600-675°C.  

The temperatures for aqueous alteration would have been lower. For low type 

(3.00-3.15) ordinary chondrites, the temperatures experienced through aqueous alteration 

would have been below 260°C, and <300 °C and possibly <100 °C for carbonaceous 

chondrites (Brearley, 2006). These aqueous alteration temperatures are considerably 

lower than needed to form the carbides of this study and support the conclusion that they 

did not form by aqueous alteration. 

Although the temperatures calculated for carbides in this study are higher than 

expected for aqueous alteration, they are not as high as expected for peak thermal 

metamorphism, which produced temperatures up to 800-900 °C (Huss et al., 2006). 

Therefore, whether carbide formed by radiogenic or impact heating, the heat source could 

not have been powerful as too much heat would destroy or prevent carbide formation and 

destroy the type 3 material they are associated with. 

Closure Temperatures and Plessite 

In Romig and Goldstein (1978), phase diagrams isotherms are presented at 730°C, 

650°C, 600°C, and 500°C. The carbide cohenite does not appear on the phase diagram 

with both kamacite and taenite until 650°C and below. When applying the bulk 

compositions in Hauver and Ruzicka (2011) for carbon and nickel in cohenite to the 

isotherms of Romig and Goldstein (1978), the carbides fall into the three-phase triangle 

region containing carbide + kamacite + taenite at 650°C or 600°C. The three phases 
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cannot form together at the 730°C isotherm according to the phase diagrams, especially at 

low carbon values. Taenite and carbide can form at the 730°C isotherm at high nickel and 

carbon values as the taenite begins to decompose into carbide and kamacite (Romig and 

Goldstein, 1978).  

Romig and Goldstein (1978) found that cohenite nucleated at taenite/kamacite 

interfaces and previous taenite grain boundaries. The cohenite always nucleated out of 

the taenite rather than kamacite (Romig and Goldstein, 1978). This is consistent with the 

observation made during this study as carbides were found either on the edge of metal 

grains or at grain interfaces, Table 4.  

Additionally, many of the carbides were found in plessitic or blocky intermixtures 

of kamacite and taenite, Table 3 and Figure 15. The formation of plessite is controlled by 

the parent taenite’s nickel content before it decomposes sequentially into several possible 

phases, which include martensite, kamacite, and tetrataenite. The temperature range that 

plessite forms at is from ~600°C to 200°C (Goldstein et al., 2006). This process results in 

plessitic textures that contain many more interface boundaries that carbide nucleation 

could take advantage of and a temperature range similar to what carbide is expected to 

form at. 

Identification of Carbide 

The carbide minerals can be identified with relative ease using the SEM, when the 

correction method is applied. In Figure 30a and b, the carbide minerals plotted in three 

main clusters. Group A matched well with cohenite and Group B with haxonite. Group C 

falls in between two carbide lines, haxonite and Fe6C, and compared to Groups A and B, 
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has the widest scatter in C contents. Group C data points likely represent a sampling of 

two or more different carbide grains with an averaged composition as the result. A fine-

scale intermixture of two carbides, cohenite (Fe3C) and Haag (Fe5C2) was described for 

Semarkona as revealed by TEM studies (Keller, 1998). This intermixture was also 

observed by Hutson et al., (2016) from EMP data. More carbide grains would need to be 

sampled to determine the third carbide. Tentatively, based on the scatter for Group C, it 

could be the Fe6C carbide mineral, however, only a small number of data points were 

plotted around that composition line.  

In any case, the correction method created and applied for this study is capable of 

distinguishing between haxonite and cohenite, with the possibility of a third carbide, 

using SEM data. The chemical formulas calculated from the averaged groups closely 

match that of the carbide minerals haxonite and cohenite.  
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Conclusions 

There is little support for the idea that the carbides of this study formed by 

aqueous alteration, as has been previously suggested for ordinary chondrites. Carbide 

association with magnetite is minimal with most of the carbide bearing meteorites in this 

study having less than 5% of the carbides occurring in CMAs. Two meteorites were at 18 

and 21% CMA occurrence and no other evidence for aqueous alteration was found. The 

textures of the carbides described by Krot et al. (1997), like the layered assemblages, 

were not seen to occur. The formation temperatures, cooling rates, and closure 

temperatures all provide temperatures that are too high to have been from aqueous 

alteration. For the carbides in this study, it does not seem like aqueous alteration was the 

formation method. 

Whether shock heating alone could have been responsible for creating carbides, 

such as previously suggested, is more equivocal. There is no correlation between shock 

stage and carbide occurrence. Carbide was never found in shock melt, but each carbide-

bearing meteorite had shock melt present. Shock blackened areas are less likely to 

contain carbide with proximity to melt. It appears that too much heat will destroy the 

carbide minerals or prevent them from forming. Meteorites that contained carbide also 

contained type 3 material. There is an anti-correlation between petrographic type and 

presence of carbide. High type clasts have little to no carbide, and the carbide can be 

found with the type 3 material or in the mixed host lithology that also contains type 3 

material.  
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Carbide can occur as anhedral, subhedral, and euhedral minerals. Carbides tend to 

be small, however several grains have been found to be up to several hundred microns 

across. Carbides primarily occur on the edges of the host metal, but roughly 25% occur 

on the inside of the metal. When they do occur inside, they are always in contact with a 

fracture or grain boundary. They have not been found occur without such contact with 

another interface. Carbides are commonly found in plessitic or blocky mixtures of 

kamacite and taenite due to the transformation of taenite into carbide and kamacite.  

Carbides formed through an event that provided a weak heat source that left the 

type 3 material they are associated with intact. Two distinct cooling rate patterns were 

observed in NWA 11121 and NWA 10518 and the carbide cooling rates are similar to 

that of low type or mixed lithology host material, approximately 10-1000K/Myr. In NWA 

11121, the high type clast had a distinctly slower cooling rate than the host or low type 

clast while in NWA 10518, the high type clast and host material had similar cooling 

rates.  

The closure temperatures are comparable to those experienced by the type 3 

material, ~300°C to ~600°C. Through the application of heat, carbon was liberated from 

type 3 material, taenite, or other carbon rich sources and nucleated out of the taenite. 

Remnant taenite rims and the budding texture are possible indications for this process. 

The heating event that formed carbides could not have been in excess of the temperatures 

experienced by type 3 material, otherwise the petrographic type 3 would be have been 

destroyed. Troilite injections that are associated with carbide also indicate a lower 

temperature for carbide formation, with an upper limit of 911°C and fast cooling. 
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Carbide minerals can be positively identified using the SEM, even with carbon 

coated thin sections. Furthermore, using the correction technique outline in this thesis, 

haxonite and cohenite can be further identified from the linescan data with accuracy 

along with the possibility of a third carbide. 
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