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Introduction: Large igneous-textured inclusions 

poor in metal and sulfide occur in ~4% of ordinary 
chondrites [1] but are otherwise diverse, suggesting 
various formation mechanisms [2,3]. Recent work on 
the petrology of 29 inclusions suggested that they can 
be subdivided into different bulk chemical groups, 
with no evidence that any were produced by igneous 
differentiation [4]. This is in contrast to other inclu-
sions that could have formed by differentiation [5]. 
Here we expand the geochemical database to 41 inclu-
sions and report on the oxygen isotopic compositions 
of 12. Our results have important implications for the 
origins of such inclusions.  

Chemical groups: Bulk chemical compositions of 
inclusions reconstructed from modal and phase com-
position data (SEM + EMPA) confirm earlier work [4] 
that inclusions comprise a few basic chemical groups, 
none of which correspond to that expected for igneous 
differentiation. The groups include: vapor-fractionated 
(Vfr, n=18 examples), unfractionated (Unfr, n=13), K-
enriched but otherwise unfractionated (Unfr+K, n=4), 
feldspar-rich (FldR, n=4), and unique (n=2). Examples 
of each group can be found in both less and more 
metamorphosed chondrites, although Unfr is more 
prevalent in type 5 and 6 (9 of 13 examples) and Vfr in 
type 3 and 4 chondrites (17 of 18).  

The unfractionated (Unfr) group has lithophile ele-
ment abundances similar to ordinary chondrites and 
depletions in Ni, Fe and S (Fig. 1a). This composition 
is best explained by the melting of chondrite accompa-
nied by metal and sulfide loss. Five such inclusions are 
located near coarse metal-sulfide nodules that could 
have separated from the inclusions during in situ melt-
ing. Unfr inclusions sometimes show evidence for 
brecciation while partly molten, consisting of obvi-
ously brecciated olivine microphenocrysts or brecci-
ated regions of olivine + mesostasis embedded in in-
clusion mesostasis that is not brecciated. Some or all 
Unfr inclusions could have formed by shock melting 
of chondrites. 

The Unfr+K group (inclusions 869-I1, 8231-I1, 
MET-I2, Dim-I1) is chemically and texturally similar 
to Unfr but distinguished by variable and sometimes 
large enrichments in K (3.5-14.5 x CI chondrite) (Fig. 
1b). This composition resembles the silicate portion of 
impact melt in some ordinary chondrite melt rocks and 
melt breccias, which also are enriched in K (2.3-12.7 x 

CI) (Fig. 1b). K-enriched impact melt was previously 
noted for Chico [6]; inclusion 869-I1 in Northwest 
Africa 869 texturally resembles impact melt rock iden-
tified elsewhere in the meteorite [7]. Although the rea-
son for K enrichment in these melts is uncertain, inclu-
sions in the Unfr+K group probably formed by impact 
melting. 

 
Fig. 1. CI-normalized abundances (mean and ±1σ) of 
3 inclusion types compared to mean O chondrite com-
position [8]; impact melt composition in (b) is based 
on the average of 2 L melt rocks and 2 L melt breccias.  

 
Inclusions in the Vfr group show evidence for a 

vapor-fractionation process, as lithophile element 
abundances trend with volatility (Fig. 1c). Six of the 
18 inclusions are droplets and could be called 
megachondrules, but both the droplets and non-
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droplets have similar compositions. Compared to other 
inclusion melts, Vfr melts were evidently more ex-
posed to a space environment (to facilitate evaporation 
or condensation) and/or were more thoroughly heated 
(to facilitate evaporation). These inclusions could have 
formed as dispersed melts analogous to chondrules.  

Oxygen isotope composition: 1.2-10.2 mg sam-
ples of inclusions were mechanically separated and 1-2 
mg subsamples were analyzed by laser fluorination at 
Open University [9] with system precision (2σ) for 
δ17O, δ18O and ∆17O of ±0.05 ‰, ±0.09 ‰, and ±0.02 
‰, respectively. Results are shown compared to type 
4-6 H-L-LL chondrites [10] in Fig. 2. Inclusions span 
a range in Δ17O (~0.1 to 1.4 ‰) and δ18O (3.8-7.8 ‰) 
values, broader than but overlapping the H-L-LL 
fields. 

There is only a partial correspondence between in-
clusion and host oxygen isotope composition and Fe-
Mg equilibration state (Fig. 2a). Inclusions with equili-
brated Fe-Mg tend to lie close to the H-L-LL fields, 
but not always within the appropriate host composi-
tion. For example, 8645-I1 (host Northwest Africa 
8645, L5) has L-like silicate compositions but Δ17O 
values far from L, at the upper end of LL (Fig. 2a). 
Conceivably 8645-I1 was metamorphosed in situ and 
equilibrated in Fe-Mg, but preserved an oxygen com-
position different than the host reflecting a different 
formation reservoir. Inclusion 7871-I1 has L-like sili-
cate compositions but fits better with the H-group oxy-
gen field. Finally, most inclusions with unequilibrated 
Fe-Mg have L and LL hosts and lie well outside of the 
L and LL fields, with Δ17O values between H chon-
drites and the terrestrial fractionation (TF) line (Fig. 
2a).  

 The relationship between inclusion chemical 
group and oxygen isotope composition is shown in 
Fig. 2b. Unfr and Unfr+K inclusions mostly have O-
isotopic compositions that resemble H-L-LL chon-
drites, consistent with them being impact melts of such 
chondrites. Specifically, the oxygen data support the 
interpretation that inclusions 869-I1 and 8231-I1 are 
shock melts of L and H chondrite, respectively; and 
that inclusion 4859-I18 is a shock melt of LL chon-
drite (consistent with previous interpretations of igne-
ous material in Northwest Africa 4859 [11]). Inclu-
sions 8645-I1 and 7871-I1 could be shock melts of LL 
and H chondrites, respectively, though both were in-
corporated in L chondrite. Inclusion MET-I2 has a low 
Δ17O value (Fig. 2b), and could have formed by impact 
melting of a separate, low-Δ17O parent body. Lastly, 
the Vfr inclusions all have generally low Δ17O values 
outside the main H-L-LL fields (Fig. 2b). Potentially 
all are megachondrules. Although the oxygen isotopic 
compositions of chondrules from ordinary chondrites 
are more diverse than type 4-6 H-L-LL [10], there are 

not many with the low Δ17O values we have found for 
Vfr inclusions. Why all such inclusions (so far) have 
low Δ17O is not clear, but suggests a distinctive proc-
ess or provenance, possibly exchange with nebular gas 
of distinct O-isotope composition.    
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Fig. 2 Oxygen isotopic compositions of inclusions 
compared to type 4-6 H, L, LL chondrites [10].  
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