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Aim: Determine I-Xe ages of R-chondrite material of varying metamorphic grade to test the validity of the onion shell model for the R-chondrite parent body.
— Rumuruti (R) chondrites Thermal Processing and Closure Ages
Q)
-— ) e Oxygen isotope ratios and high oxidation state distinguish them from other “Onion shell” - “Rubble Pile” — =
L) meteorite groups [1, and references therein].
)
S  Most are regolith breccias, sampling several lithologies [2].
(-
e ° Contain material that experienced varying degrees of metamorphism [2]: e Internal heat source (e.g. 2°Al) e Early, layered planetesimals fragmented.
—layered parent body. . ‘“ 1o
— R3 (least metamorphosed) = R6 (most metamorphosed). y P Y Reas.sembled, EPS a “rubble pile
=5} e |nterior hotter, cools slower. continued cooling.
<., * 'Pldecaysto *Xe* (half-life = 16 I\/Iyr).. 129X?* has been.detected in R-chondrites » Metamorphic grade should correlate ¢ Closure age (e.g. length of cooling time)
[3-5] but the I-Xe system has not been investigated previously. with closure age, seen in ordinary does not correlate with metamorphic
e Chronology not well examined: only Ar-Ar [6] and Mn-Cr [7] systems. chondrites [8, 9]. grade [10].
E, Table 1. Sample details Irradiation Xe isotopic analyses
Q)
O e Samples were weighed, wrapped in aluminium foil, e Samples were laser step-heated.
— loaded into quartz tubes, sealed & evacuated. . . . .
S e Xe isotopic analyses carried out using the
<E5) A1 Low R3 Clast * [rradiated at Petten reactor, Netherlands. RELAX RIMS instrument [11-13].
i), RA2 Mid R3 Clast e Exposed to thermal neutrons (6.42x10'% n cm™2). « Samples RA5 and RA6 released very large
> NWA 6492 RA3 High R3 Clast ‘ . —— amounts of hydrocarbons rendering the mass
| A4 Mixture Matrix Refrigerator 4 ¥ |l spectrometer unusable for several days.
RAS R>-R6 Clast Enhanced —>RA5 and RAG are still awaiting analyses.
RA6 R5-R6 Clast Laser
NWA 3364 °B1 RS Whole-rock Analyser for —>Data from analyses of NWA 3364 (R5)
Xenon (included in the same irradiation) are
Metamorphic grades of NWA 6492 were determined | Y reported here to.allow comparison of
using optical microscopy at Cascadia Meteorite Library. L — ' R3 and R5 material.
}3 1 Figure 1. I-Xe isochron plot . Table 2. I-Xe ages (Myr)
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> te ys tfa t Sho\z ; 09 =% RALdata —  a RAL (Low-T) |2 I-Xe age relative to
N ps | \\\,\ consistent with E} Shallowater Absolute
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between 28Xe* and R . D later closure)
129y ncluded 0.7 | l;\ .. different RA3 - .
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here. Qe R NN O
x 06 Oy ® RA4 =
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LOW_temperatu re .EF 0 \\\\—\.:;. e i RA2 -5.6 4556.7 2.8
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ps { ) w N s RA3 -10.9 4551.4 4.5
released uncorrelated 0.3 - _. RN -
128 N S
Xe™ that can be . . SN N RA4 -11.9 4550.4 2.0
attributed to “ | Isochrons (dashed '59)/--._,. N T s
terrestrial .. | lines) obtained using OA%,_. S '.""--P,Xj\x% - RB1 -14.1 4548.2 1.8
contamination, late- a York (1969) fit. . \\ ‘\\
stage addition of 1%/ 0 | | | | | B N S
129y 5 * 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
rr IO_T_S f)f Xe™ from 128K 0 * /129K @ | Y , I-Xe ages (Myr) are given relative to the I-Xe irradiation
IR SIIEE. — standard: enstatite from the aubrite, Shallowater, absolute

Initial iodine ratios: correspond

Excess 123Xe* over Q-Xe [14] ,
to |I-Xe ages in Table 2.

(Pb-Pb) age of 4562.3 £ 0.4 Myr [15].

ClE samples show earlier closure to Xe loss than R5 sample, Closure to Xe loss occurred at 4556 + 1 — 4548 + 2 Myr
consistent with the onion shell model. ~5 Myr younger than Mn-Cr ages [16] = heterogeneity of >3Mn?
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* Primitive, type R3 samples show - f Enstatites (reduced) R-chondrites (oxidised) \

X

older I-Xe ages than R5 sample. - 13 SUN O O
. o Increasing oxidation state with heliocentric distance [18] N
e Matrix sample RA4 appears to record . RA3 UL:—J: Radial heterogeneity of >3Mn in early Solar System [19]?
- later resetting, consistent with a . g \ I-Xe Ages > Mn-Cr Ages [17] I-Xe Ages < Mn-Cr Ages (this work)/
D higher metamorphic grade. | > . . . . .
Al ‘;"W‘T’ S  [|-Xe ages are older than Mn-Cr ages in enstatite chondrites [17] but younger in R-chondrites.
e The oldest ages (~4556 Myr) appear RAL (High-T) S
5 yr)app i 7] - do differences between chronometers indicate radial heterogeneity of >3Mn [19]?
to be too late to date chondrule 3
. . | | | | | | | (] [ [ . . 53 .
formation: s s asss ssse s asso st asss asss | Application of a correction factor based on proposed radial heterogeneity of >>Mn in the
carlier  Absolute age (Myr) later early Solar System improved the correlation between I-Xe and Mn-Cr ages in enstatites [17].

— secondary processing occurred

in even the most primitive samples. Figure 2. I-Xe ages appear to

, _ - however, [20] re-examined Mn-Cr system and found homogenous Mn isotopes;
correlate with metamorphism

attributed apparent heterogeneity to terrestrial °*Cr/>%Cr ratio used in data correction.

More I-Xe analyses are needed (including R5-R6 samples of NWA 6492) To test this hypothesis, I-Xe and Mn-Cr analyses should be carried out on
before confidence can be placed on this correlation. mineral separates from the same R-chondrite material.
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